Skip to main content

Recent Trends in the Evaluation of Cementitious Material in Radioactive Waste Disposal

  • Chapter
  • First Online:

Part of the book series: Handbook of Environmental Engineering ((HEE,volume 17))

Abstract

Cementitious materials are essential parts in any radioactive waste disposal facility (either shallow or deep underground facilities). Despite these materials having been extensively used and studied, there is still a need to investigate and understand their long-term behavior due to the fact that disposal is a passive system and regulatory requirements for the safe disposal range from 300 to few thousands of years, so there is a need to ensure that the system will work as intended for this period. An extensive array of researches have been devoted to study the feasibility of using cement or cement-based materials in immobilizing and solidifying different radioactive wastes and the feasibility of its potential use as engineering barriers. In this work, the current understanding of cement hydration mechanisms and kinetics will be presented. Experimental and predictive trends to assess the long-term behavior of cementitious material will be reviewed, and recent researches on the utilization of cements or cement-based materials as engineering barriers in radioactive waste disposal will be summarized. Finally this work will examine how these researches contributed to the current knowledge of long-term behavior of cementitious materials in disposal conditions and analyze if this knowledge has provided required inputs to regulation.

Keywords:

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ab :

Tortuosity constant (dimensionless)

A 1 :

Effective area of concrete surrounding the reinforcement bar (cm2)

A i :

Radioactivity in the waste form (Bq)

a i :

Specific radioactivity of the solution (Bq/L)

As 1 :

Area of one reinforcement bar (cm2)

B :

Linear strain caused by one mole of sulfate reduced in 1 m3 (m3/mole)

b f :

Fracture aperture (cm)

C :

Concentration (mg/L)

Cl:

Chloride concentration in bulk solution (mg/L)

D :

Diffusion coefficient (cm2/s)

Dr:

Reinforcement bar diameter (cm)

E :

Young modulus (20 GPa)

g :

Gravitational Acceleration (980 cm/s2)

h 2 :

Distance between neutral axis and the lower face (cm)

I :

Source/sink term for contaminant (dimensionless)

K :

Hydraulic conductivity (cm/s)

k :

Reaction rate constant (s−1)

K d :

Concentration factor of radionuclide (mL/g)

K mp :

Permeability of cement matrix (cm2)

m :

Quantity of sulfate reacted with cement (mole/kg anhydrous cement)

NR i :

Normalized leaching rate of nonradioactive nuclides (g/cm2day)

q i :

Specific activity of a given radionuclide in a waste form (Bq/g)

R d :

Retardation coefficient (dimensionless)

s :

Crack spacing (cm/crack)

S :

Surface area of the waste form in contact with water (cm2)

t :

Time (s)

tb:

Bottom of the concrete cover over reinforcement (cm)

U o :

Maximum network dissolution velocity (cm/d)

v :

Poisson’s ratio (dimensionless)

V :

Solution volume (L)

W :

Moisture source/sink term (dimensionless)

WC:

Water-to-cement weight ratio (dimensionless)

w i :

Mass of nuclide in the waste form (g)

w o :

Mass of the waste form (g)

X :

Depth of carbonation penetration (cm)

x :

Spatial coordinate in the direction of flow (cm)

x c :

Concrete thickness over steel reinforcement (cm)

x d :

Depth of deterioration (cm)

y :

Spatial coordinate normal to the direction of flow (cm)

ζ :

Soil moisture capacity \( \zeta =\delta \theta /\delta \psi \)

λ :

Decay constant \( \left({\mathrm{s}}^{-1}\right) \)

ρ :

Density of water (g/cm3)

γ :

Fracture energy of concrete (J/m2)

ψ :

Water head Pressure (cm)

α :

Roughness factor for fracture pain (dimensionless)

ε :

Strain in steel reinforcement (dimensionless)

μ :

Viscosity (g/cm s)

θ :

Volumetric water content (cm3/cm3)

ρ c :

Bulk density (g/mL)

θ c :

Total porosity (dimensionless)

α 1, α t :

Longitudinal and transverse dispersivity (cm)

Alum:

Aluminate in unhydrated cement

c :

Contaminant

cc:

Critical chloride for initiation of corrosion

ch:

Chloride in surrounding material

E :

Reacted sulfate as ettringite

F :

Final state

i :

Intrinsic

ic:

Total inorganic carbon in water

ini:

Initial critical chloride in concrete pore water

k :

Sulfate in kinetic experiment

Mg:

Magnesium in bulk solution

o:

Initial state

port:

Bulk portlandite in concrete solid

s :

Sulfate in bulk solution

sat:

Saturation in aqueous solution

spall:

Characteristic for reaction

References

  1. Abdel Rahman RO, El-Kamash AM, Zaki AA, El Sourougy MR (2005) Disposal: a last step towards an integrated waste management system in Egypt. In: Proceedings of the International Conference on the Safety of Radioactive Waste Disposal, Tokyo, pp. 317–324 (IAEA-CN-135/81)

    Google Scholar 

  2. Ojovan MI, Lee WE (2005) An introduction to nuclear waste immobilisation. Elsevier Science, Amsterdam. ISBN: 0-080-44462-8.

    Google Scholar 

  3. Abdel Rahman RO, Kozak MW, Hung YT (2014) Radioactive pollution and control. In: Hung YT, Wang LK, Shammas NK (eds) Handbook of environmental and waste management. Vol. 2: land and groundwater pollution control. World Scientific, Singapore, pp 950–1028

    Google Scholar 

  4. International Atomic Energy Agency (2001) Performance of engineered barrier materials in near surface disposal facilities for radioactive waste. IAEA, Vienna (TECDOC-1255)

    Google Scholar 

  5. International Atomic Energy Agency (1984) Design, construction, operation, shutdown and surveillance of repositories for solid radioactive wastes in shallow ground. Safety series no. 63. IAEA, Vienna

    Google Scholar 

  6. Gupta MP, Mondal NK, Bodke SB, Bansal NK (1997) Indian experience in near surface disposal of low level radioactive solid wastes, planning and operation of low level waste disposal facilities. In Proceedings of the international symposium, Vienna. IAEA, Vienna, pp 275–284

    Google Scholar 

  7. Sakabe Y (1997) Design concept and its development for the Rokkasho low level radioactive waste disposal centre, planning and operation of low level waste disposal facilities. In Proceedings of the symposium, Vienna. IAEA, Vienna, pp 123–132

    Google Scholar 

  8. International Atomic Energy Agency (2003) Safety considerations in the disposal of disused sealed radioactive sources in borehole facilities. IAEA, Vienna (IAEA-TECDOC-1368)

    Google Scholar 

  9. Abdel Rahman RO, Rakhimov RZ, Rakhimova NR, Ojovan MI (2014) Cementitious materials for nuclear waste immobilisation. Wiley, New York

    Google Scholar 

  10. Spence RD, Caijun Shi (2005) Stabilization and solidification of hazardous, radioactive, and mixed wastes. CRC Press, Boca Raton

    Google Scholar 

  11. Mindess S, Young JF, David D (2003) Concrete, 2nd edn. Prentice Hall, Pearson Education, New York

    Google Scholar 

  12. Abdel Rahman RO, Zein DH, Abo SH (2013) Assessment of Strontium immobilization in cement-bentonite matrices. Chem Eng J 228:772–780

    Article  CAS  Google Scholar 

  13. Odler I (2006) Setting and hardening of Portland cement. In: Hewlett PC (ed) Lea’s chemistry of cement and concrete. Elsevier Science, Amsterdam, pp 241–297

    Google Scholar 

  14. Bishop M, Bott SG, Barron AR (2003) A new mechanism for cement hydration inhibition: solid-state chemistry of calcium nitrilotris (methylene) triphosphonate. Chem Mater 15:3074–3088

    Article  CAS  Google Scholar 

  15. Barron AR (2010) Hydration of Portland cement. Connexions website: http://cnx.org/content/m16447/1.11/content_info. Last accessed 21 Aug 2014

  16. Taylor HF (1997) Cement chemistry. Thomas Telford, London

    Book  Google Scholar 

  17. Thomas JJ, Jennings HM, Allen AJ (2010) Relationships between composition and density of tobermorite, jennite, and nanoscale CaO-SiO2-H2O. J Phys Chem C 114:7594–7601

    Article  CAS  Google Scholar 

  18. Schindler AK (2004) Prediction of concrete setting. In: Weiss J, Kovler K, Marchand J, Mindess S (eds) Proceedings of the RILEM international symposium on advances in concrete through science and engineering. RILEM Publications SARL, Evanston. http://www.eng.auburn.edu/users/antons/Publications/RILEM-Schindler-Concrete-Setting-Dec-03.pdf

  19. International Atomic Energy Agency (2004) Long term behavior of low and intermediate level waste packages under repository conditions. IAEA, Vienna (IAEA-TECDOC-1397)

    Google Scholar 

  20. Drace Z, Mele I, Ojovan MI, Abdel Rahman RO (2012) An overview of research activities on cementitious materials for radioactive waste management. Mater Res Soc Symp Proc 1475:253–264

    Article  Google Scholar 

  21. International Atomic Energy Agency (2004) Safety assessment methodologies for near surface disposal facilities, vol 1. IAEA, Vienna

    Google Scholar 

  22. Walton JC, Plansky LE, Smith RW (1990) Models for estimation of service life of concrete barriers in low-level radioactive waste disposal. U.S. Nuclear Regulatory Commission, Washington (NUREG/CR-5542 EGG-2597)

    Book  Google Scholar 

  23. Abdel Rahman RO, Zaki AA (2009) Assessment of the leaching characteristics of incineration ashes in cement matrix. Chem Eng J 155:698–708

    Article  CAS  Google Scholar 

  24. Suzuki K, Ono Y (2008) Leaching characteristics of stabilized/solidified fly ash generated from ash-melting plant. Chemosphere 71:922–932

    Article  CAS  Google Scholar 

  25. Geankoplis CJ (1993) Principles of unsteady-state and convective mass transfer. In: Betty S (ed) Transport processes and unit operations. Prentice Hall, Englewood Cliffs

    Google Scholar 

  26. Abdel Rahman RO, Zaki AA (2011) Comparative study of leaching conceptual models: Cs leaching from different ILW cement based matrices. Chem Eng J 173:722–736

    Article  CAS  Google Scholar 

  27. El-Kamash AM, Mohamed RO, Nagy ME, Khalill MY (2002) Modeling and validation of radionuclides releases from an engineered disposal facility. Int J Waste Manage Environ Restoration 22(4):373–393

    Google Scholar 

  28. Johnston HH, Wilinot DJ (1992) Sorption and diffusion studies in cementitious grouts. Waste Manage 12(2–3):289–297

    Article  CAS  Google Scholar 

  29. Mohamed RO, El-Kamash AM, El-Sourougy MR (2000) Performance assessment for backfill materials in waste repository site. In: International Conference on the Safety of Radioactive Waste Management, Spain, 1317 March (IAEA-CN-78/69)

    Google Scholar 

  30. Plecas IB, Dimovic SD (2009) Mathematical modelling of immobilization of radionuclides 137Cs and 60Co in concrete matrix. J Open Waste Manage 2:43–46

    Article  CAS  Google Scholar 

  31. Marsavina L, Audenaert K, De Schutter G, Faur N, Marsavina D (2009) Experimental and numerical determination of the chloride penetration in cracked concrete. Construct Build Mater 23:264–274

    Article  Google Scholar 

  32. Garbalińska H, Kowalski SJ, Staszak M (2010) Linear and non-linear analysis of desorption processes in cement mortar. J Cem Concr Res 40:752–762

    Article  Google Scholar 

  33. Abdel Rahman RO, Ibrahim HA, Abdel Monem NM (2009) Long-term performance of zeolite Na A-X blend as backfill material in near surface disposal vault. Chem Eng J 149:143–152

    Article  CAS  Google Scholar 

  34. Abdel Rahman RO (2005) Performance assessment of unsaturated zone as a part of waste disposal site. PhD thesis, Faculty of Engineering, Alexandria University, Alexandria

    Google Scholar 

  35. Sahara F, Murakami T, Kobayashi I, Mihara M, Ohi T (2008) Modelling for the long-term mechanical and hydraulic behavior of betonite and cement-based materials considering chemical transitions. Phys Chem Earth 33:531–537

    Article  Google Scholar 

  36. Abdel Rahman RO (1999) Performance assessment of engineered barrier in waste disposal site. MSc thesis, Faculty of Engineering, Alexandria University, Alexandria

    Google Scholar 

  37. Abdel Rahman RO (2011) Preliminary evaluation of the technical feasibility of using different soils in waste disposal cover system. Environ Prog Sustainable Energy 30(1):19–28

    Article  CAS  Google Scholar 

  38. International Atomic Energy Agency (2001) Procedures and techniques for closure of near surface disposal facilities for radioactive waste. IAEA, Vienna (TECDOC-1260)

    Google Scholar 

  39. Drace Z, Ojovan MI (2009) The behaviors of cementitious materials in long term storage and disposal: an overview of results of the IAEA coordinated research program. Mater Res Soc Symp Proc 1193:663–672

    Article  Google Scholar 

  40. Ojovan MI, Drace Z (2013) Processing and disposal of radioactive waste: selection of technical solutions. Mater Res Soc Symp Proc 1518:203–209 (mrsf12-1518-ll09-02). doi:10.1557/opl.2012.1569

    Google Scholar 

  41. Dauzeres A, Le Bescop P, Sardini P, Dit Coumes CC (2010) Physico-chemical investigation of clayey/cement-based materials interaction in the context of geological waste disposal: experimental approach and results. J Cem Concr Res 40(8):1327–1340

    Article  CAS  Google Scholar 

  42. NIREX (2008) The longevity of intermediate-level radioactive waste packages for geological disposal: a review. Environment Agency, Rio House, Bristol (NWAT/Nirex/06/003)

    Google Scholar 

  43. Berner U (2003) Project opalinus clay: radionuclide concentration limits in the cementitious near-field of an ILW repository, Nuclear Energy and Safety Research Department Laboratory for Waste Management. PSI Bericht 02–26. PSI, Villigen. http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/34/065/34065552.pdf

  44. Langton CA, Kosson DS, Garrabrants A (2007) Engineered cementitious barriers for low-activity radioactive waste disposal. Workshop summary and recommendations for DOE Office of Environmental Management (WSRC-TR-2006-00226)

    Google Scholar 

  45. ICRP (2007) Recommendation of the international commission on radiological protection. ICRP publication 103. Ann ICRP 37:2–4

    Article  Google Scholar 

  46. ICRP (2013) Task group 80 geological disposal of long-lived solid radioactive waste. Ann ICRP 42(3):1–57

    Google Scholar 

  47. IAEA (2013) Near surface disposal of radioactive waste. Draft safety guide no. DS356. IAEA, Vienna

    Google Scholar 

  48. IAEA (2013) The safety case and safety assessment for radioactive waste disposal. Draft safety guide no. DS 355. IAEA, Vienna

    Google Scholar 

  49. IAEA (2013) Disposal of radioactive waste. Draft safety guide no. DS354. IAEA, Vienna

    Google Scholar 

  50. Joint CNRA/CRPPH/RWMC Workshop (1997) Regulating the long-term safety of radioactive waste disposal. In: Proceedings of an NEA international workshop held in Córdoba, Spain, 20–23 Jan1997. OECD, Paris

    Google Scholar 

  51. Glasser FP (1992) Progress in the immobilization of radioactive wastes in cement. J Cem Concr Res 22:201–209

    Article  CAS  Google Scholar 

  52. Burns RH (1971) Solidification of low and intermediate level waste. At Energy Rev 9:547–552

    CAS  Google Scholar 

  53. Plecas I, Dimovic S (2003) Immobilization of Cs and Co in concert matrix. Ann Nucl Energy 30:1899–1903

    Article  CAS  Google Scholar 

  54. Abdel Rahman RO, Zaki AA, El-Kamash AM (2007) Modeling the long-term leaching behavior of 137Cs, 60Co, and 152,154Eu radionuclides from cement-clay matrices. J Hazard Mater 145(3):372–380

    Article  CAS  Google Scholar 

  55. Ojovan MI, Varlackova GA, Golubeva ZI, Burlaka ON (2011) Long-term field and laboratory leaching tests of cemented radioactive wastes. J Hazard Mater 187:96–302

    Article  Google Scholar 

  56. Batchelor B (2006) Overview of waste stabilization with cement. Waste Manage 26:689–698

    Article  CAS  Google Scholar 

  57. Strachan DM (2001) Glass dissolution: testing and modelling for long-term behaviour. J Nucl Mater 298:69–77

    Article  CAS  Google Scholar 

  58. Lee WE, Ojovan MI, Stennett MC, Hyatt NC (2006) Immobilisation of radioactive waste in glasses, glass composite materials and ceramics. Adv Appl Ceram 105(1):3–12

    Article  CAS  Google Scholar 

  59. Ojovan MI, Ojovan NV, Startceva IV, Barinov AS (2002) Some trends in radioactive waste form behaviour revealed in long term field tests. In: Proceedings of the WM’02, Tucson, Arizona, 24–28 Feb 2002, 6p (CD-ROM; 385.pdf)

    Google Scholar 

  60. Dmitriev SA, Barinov AS, Ozhovan NV, Startseva IV, Golubeva ZI, Sobolev IA, Ozhovan MI (2005) Results of 16 years of testing of vitrified intermediate-level wastes from the Kursk nuclear power plant. At Energy 98(3):196–201

    Article  CAS  Google Scholar 

  61. Plecas I, Pavlovic R, Pavlovic S (2004) Leaching behaviour of 60Co and 137Cs from spent ion exchange resins in cement-bentonite clay matrix. J Nucl Mater 327:171–174

    Article  CAS  Google Scholar 

  62. Varlakova GA, Golubeva ZI, Barinov AS, Sobolev IA, Ojovan MI (2009) Properties and composition of cemented radioactive wastes extracted from the mound-type repository. In: Material Research Society symposium proceedings, Warrendale (1124-Q05-07)

    Google Scholar 

  63. Sobolev IA, Dmitriev SA, Barinov AS, Varlackova GA, Golubeva ZI, Ojovan MI (2005) Reliability of cementation technology proved via long-term field tests. In: Proceedings of the ICEM’05, Glasgow, 4–8 September. ASME, Fairfield (ICEM05-1216)

    Google Scholar 

  64. NRC US (1991) Technical position on waste form. Low-Level Waste Management Branch, Division of Low-Level Waste Management and Decommissioning, U.S. Nuclear Regulatory Commission, Office of Nuclear Material Safety and Safeguards, Washington

    Google Scholar 

  65. ASTM. Standard test method for compressive strength of cylindrical concrete specimens. ASTM International, West Conshohocken (C39/C39M – 09a). http://www.astm.org/Standards/C39.htm

  66. Environment Agency (2001) Guidance on the disposal of contaminated soils, version 3. Environment Agency, Bristol

    Google Scholar 

  67. The Dutch List (1994) Intervention values and target values: soil quality standards. Ministry of Housing, Spatial Planning and Environment, The Hague

    Google Scholar 

  68. Stegemann JA, Côté PL (1996) A proposed protocol for evaluation of solidified wastes. Sci Total Environ 178(1–3):103–110

    Article  CAS  Google Scholar 

  69. Sherwood PT (1993) Soil stabilization with cement and lime. HMSO, London

    Google Scholar 

  70. Sobolev IA, Dmitriev SA, Barinov AS, Varlakova GA, Golubeva ZI, Startceva IV, Ojovan MI (2006) 39-years performance of cemented radioactive waste in a mound type repository. Mater Res Soc Symp Proc 932:721–726

    Article  CAS  Google Scholar 

  71. Sinha PK, Shanmugamani AG, Renganathan K, Muthiah R (2009) Fixation of radioactive chemical sludge in a matrix containing cement and additives. Ann Nucl Energy 36:620–625

    Article  CAS  Google Scholar 

  72. Anji Reddy D, Khandelwal SK, Muthiah R, Shanmugamani AG, Paul B, Rao SVS, Sinha PK (2010) Conditioning of sludge produced through chemical treatment of radioactive liquid waste; operating experiences. Ann Nucl Energy 37(7):934–941

    Article  Google Scholar 

  73. Dogaru D, Jinescu C, Dogaru G (2009) Influence of the sludge content on the mechanical properties of the cemented based radioactive waste form. Rev Chim 60(8):826–829

    CAS  Google Scholar 

  74. Shi C, Fernández-Jiménez A (2006) Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements. J Hazard Mater 137(3):1656–1663

    Article  CAS  Google Scholar 

  75. Sugaya A, Horiguchi K, Tanaka K, Akutsu S (2009) Cement based encapsulation experiments of low radioactive phosphate effluent. Mater Res Soc Symp Proc 1124:373–378

    Google Scholar 

  76. Connell M (2008) Sellafield chooses GGBS due to long-term durability and immobilisation benefits. Concrete 42(6):26–28

    Google Scholar 

  77. Jenni A, Hyatt NC (2010) Encapsulation of caesium-loaded Ionsiv in cement. Cem Concr Res 40(8):1271–1277

    Article  CAS  Google Scholar 

  78. Plecas I, Dimovic S (2006) Immobilization of 137Cs and 60Co in concrete matrix. J Porous Media 9(2):181–184

    Article  CAS  Google Scholar 

  79. Plecas I (2005) Leaching study in process of solidification of radionuclide 60Co in concrete. Pol J Environ Stud 14(5):699–701

    CAS  Google Scholar 

  80. Plecas I, Dimovic S (2006) Immobilization of 137Cs and 60Co in a concrete matrix. Part two: mathematical modeling of transport phenomena. Porous Media 9(5):483–489

    Article  CAS  Google Scholar 

  81. Plećaš I, Dimovic S (2006) Curing time effect on compressive strength and incremental leaching rates of 137Cs and 60Co in cement immobilized sludge. Prog Nucl Energy 48(7):629–633

    Article  Google Scholar 

  82. Plecas I, Dimovic S, Smiciklas I (2006) Utilization of bentonite and zeolite in cementation of dry radioactive evaporator concentrate. Prog Nucl Energy 48(6):495–503

    Article  CAS  Google Scholar 

  83. McGlinn PJ, Brew DRM, Aldridge LP, Payne TE, Olufson KP, Prince KE, Kelly IJ (2008) Durability of a cementitious waste form for intermediate level waste. Mater Res Soc Symp Proc 1107:101–108

    Article  Google Scholar 

  84. Papadokostaki KG, Savidou A (2009) Study of leaching mechanisms of caesium ions incorporated in Ordinary Portland Cement. J Hazard Mater 171(1–3):1024–1031

    Article  CAS  Google Scholar 

  85. Wieland E, Tits J, Kunz D, Dähn R (2008) Strontium uptake by cementitious materials. Environ Sci Technol 42(2):403–409

    Article  CAS  Google Scholar 

  86. El-Kamash AM, El- Nagga r MR, El-Dessouky MI (2006) Immobilization of cesium and strontium radionuclides in zeolite-cement blends. J Hazard Mater 136(2):310–316

    Article  CAS  Google Scholar 

  87. Osmanlioglu AE (2006) Management of spent sealed radioactive sources in Turkey. Health Phys 91(3):258–262

    Article  CAS  Google Scholar 

  88. Guerrero A, Goni S (2002) Efficiency of blast furnace slag cement for immobilize simulated borate radioactive liquid waste. Waste Manage 22:831–836

    Article  CAS  Google Scholar 

  89. Fernandez-Jimenz A, Macphee DE, Lachowsk EE, Dalomo A (2005) Immobilization of Cs in alkaline activated fly ash matrix. J Nucl Mater 346:185–193

    Article  Google Scholar 

  90. Osmanlioglu AE (2002) Immobilization of radioactive waste by cementation with purified kaolin clay. Waste Manage 22:481–483

    Article  CAS  Google Scholar 

  91. El Kamash AM, El Dakroury AM, Aly HF (2002) Leaching kinetic of Cs and Co radionuclide fixed in cement and cement based materials. J Cem Concr Res 32:1797–1803

    Article  Google Scholar 

  92. Sakr K, Sayed MS, Hafez N (1997) Comparison studies between cement and cement- kaolinite properties for incorporation of low level radioactive wastes. J Cem Concr Res 27:1919–1926

    Article  CAS  Google Scholar 

  93. El-Dakroury AMS (2008) Gasser, Rice husk ash (RHA) as cement admixture for immobilization of liquid radioactive waste at different temperatures. J Nucl Mater 381(3):271–277

    Article  CAS  Google Scholar 

  94. Foldsova M, Luckac P (1996) Leachability of Co and Cs from natural and chemically treated zeolites. J Radioanal Nucl Chem 214:479–487

    Article  Google Scholar 

  95. Dyer A, Las T, Zubair M (2001) The use of natural zeolites for radioactive waste treatment studies on leaching from zeolite/cement composites. J Radioanal Nucl Chem 243:839–841

    Article  Google Scholar 

  96. Junfeng L, Gong ZW, Jianlong W (2005) Solidification of low level-radioactive resins in ASC zeolite blends. Nucl Eng Des 235:817–821

    Article  Google Scholar 

  97. Osmanlioglu AE (2006) Treatment of radioactive liquid waste by sorption on natural zeolite in Turkey. J Hazard Mater 136:310–316

    Article  Google Scholar 

  98. Varlakova GA, Dyakonova AT, Netrusov AI, Ojovan MI (2011) Microbiological activities on cementitious waste forms in a shallow-ground repository. J Mater Sci Eng B1:591–596

    Google Scholar 

  99. Hussein OH-O, Ojovan M, Kinoshita H (2011) Immobilisation of BaSO4: phases and microstructure of OPC-BaSO4 system cured at an elevated temperature. In: Proceedings of the WM’11 conference, Phoenix, 27 Feb–3 Mar 2011, p 11 (WM – 11012)

    Google Scholar 

  100. Varlackova GA, Golubeva ZI, Barinov AS, Roschagina SV, Dmitriev SA, Sobolev IA, Ozhovan MI (2009) Evaluation of the cemented radioactive waste with prolonged tests in mound type repository. At Energy 107(1):32–38

    Article  Google Scholar 

  101. Spasova LM, Ojovan MI (2008) Characterisation of Al corrosion and its impact on the mechanical performance of composite cement wasteforms by the acoustic emission technique. J Nucl Mater 375:347–358

    Article  CAS  Google Scholar 

  102. Spasova LM, Ojovan MI, Scales CR (2007) Acoustic emission technique applied for monitoring and inspection of cementitious structures encapsulating aluminium. J Acoust Emission 22:51–68

    Google Scholar 

  103. Eskander SB, Bayoumi TA, Saleh HM (2013) Leaching behavior of cement-natural clay composite incorporating real spent radioactive liquid scintillator. Prog Nucl Energy 67:1–6

    Article  CAS  Google Scholar 

  104. Abdel Rahman RO, Zein DH, Abo Shadi H (2014) Cesium binding and leaching from single and binary contaminant cement-bentonite matrices. Chem Eng J 245:276–287

    Article  CAS  Google Scholar 

  105. Navarro Santos M (2004) Behaviour of concrete container CE-2 a under disposal conditions. IAEA, Vienna (Tec Doc 1397)

    Google Scholar 

  106. Chen L, Li J-H (2009) Analysis of cementation technology for liquid radioactive-waste in PWR NPPs. Nucl Power Eng 30(2):113–116

    Google Scholar 

  107. Craeyea B, De Schutter G, Van Humbeeck H, Van Cotthem A (2009) Early age behaviour of concrete supercontainers for radioactive waste disposal. Nucl Eng Des 239:23–35

    Article  Google Scholar 

  108. Andrade C, Martínez I, Castellote M, Zuloaga P (2006) Some principles of service life calculation of reinforcements and in situ corrosion monitoring by sensors in the radioactive waste containers of El Cabril disposal (Spain). J Nucl Mater 358(2–3):82–95

    Article  CAS  Google Scholar 

  109. Trotignon L, Devallois V, Peycelon H, Tiffreau C, Bourbon X (2007) Predicting the long term durability of concrete engineered barriers in a geological repository for radioactive waste. Phys Chem Earth 32(1–7):259–274

    Article  Google Scholar 

  110. Poyet S, Charles S (2009) Temperature dependence of the sorption isotherms of cement-based materials: heat of sorption and Clausius-Clapeyron formula. Cem Concr Res 39(11):1060–1067

    Article  CAS  Google Scholar 

  111. Fernández R, Cuevas J, Mäder UK (2010) Modeling experimental results of diffusion of alkaline solutions through a compacted bentonite barrier. Cem Concr Res 40(8):1255–1264

    Article  Google Scholar 

  112. Fomina M, Podgorsky VS, Olishevska SV, Kadoshnikov VM, Pisanska IR, Hillier S, Gadd GM (2010) Fungal deterioration of barrier concrete used in nuclear waste disposal. Geomicrobiol J 24(7–8):643–653

    Google Scholar 

  113. Galíndez JM, Molinero J (2010) Assessment of the long-term stability of cementitious barriers of radioactive waste repositories by using digital-image-based microstructure generation and reactive transport modeling. Cem Concr Res 40(8):1278–1289

    Article  Google Scholar 

  114. García Calvo JL, Hidalgo A, Alonso C, Fernández Luco L (2010) Development of low-pH cementitious materials for HLRW repositories. Resistance against ground waters aggression. Cem Concr Res 40(8):1290–1297

    Article  Google Scholar 

  115. Perlot C, Bourbon X, Carcasses M, Ballivy G (2007) The adaptation of an experimental protocol to the durability of cement engineered barriers for nuclear waste storage. Mag Concr Res 59(5):311–322. ISSN: 0024-9831; E-ISSN: 1751-763X.

    Google Scholar 

  116. Small JS, Thompson OR (2009) Modelling the spatial and temporal evolution of pH in the cementitious backfill of geological disposal facility. Mater Res Soc Symp Proc 1124:327–332

    Google Scholar 

  117. Sakamoto H, Shibata M, Owada H, Kaneko M, Kuno Y, Asano H (2007) Development of an analytical technique for the detection of alteration minerals formed in bentonite by reaction with alkaline solutions. Phys Chem Earth 32(1–7):311–319

    Article  Google Scholar 

  118. Shimura T, Fujiwara A, Vomvoris S, Marschall P, Lanyon GW, Ando K, Yamamoto S (2006) Large-scale gas migration test at grimsel test site. In: Proceedings of the 11th International High-level Radioactive Waste Management Conference, IHLRWM, pp 784–791

    Google Scholar 

  119. Antonv D (2003) Soil based barriers for a low and intermediate level radioactive waste disposal. In: Proceedings of the International Conference on Radioactive Waste Management and Environmental Remediation, ICEM 1, pp 571–573

    Google Scholar 

  120. Wieland E, Spieler P (2001) Colloids in the mortar backfill of a cementitious repository for radioactive waste. Waste Manage 21(6):511–523

    Article  CAS  Google Scholar 

  121. Huertas FJ, Hidalgo A, Rozalén ML, Pellicione S, Domingo C, García-González CA, Andrade C, Alonso C (2009) Interaction of bentonite with supercritically carbonated concrete. Appl Clay Sci 42(3–4):488–496

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research has been conducted within the IAEA-coordinated research project (CRP) “Behaviors of Cementitious Materials in Long Term Storage and Disposal.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rehab O. Abdel Rahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Abdel Rahman, R.O., Ojovan, M.I. (2016). Recent Trends in the Evaluation of Cementitious Material in Radioactive Waste Disposal. In: Wang, L., Wang, MH., Hung, YT., Shammas, N. (eds) Natural Resources and Control Processes. Handbook of Environmental Engineering, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-26800-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26800-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26798-2

  • Online ISBN: 978-3-319-26800-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics