Skip to main content

Bambara Groundnut for Food Security in the Changing African Climate

  • Chapter
  • First Online:
Sustainable Agriculture Reviews

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 19))

Abstract

Global food production must respond to the demands of a growing world population, and to the hazards of climate change. Higher temperatures, unpredictable rainfall and weather patterns, changes in growing seasons, increased occurrences of drought and extreme weather events will exert a greater strain on agriculture. These changes are forecasted to have a high impact in Africa. Warming in Africa should be greater than the global average, with decreasing precipitation leading to higher occurrence of drought in many regions. Climate change will cause shifts in food production and yield loss due to more unpredictable weather patterns. Climate change will also affect food prices and increase malnutrition, especially amongst children. Improving crop productivity and nutritional content is therefore vital.

Here we review the potential of an underutilised crop, Bambara groundnut, to contribute to food security in changing African climates. The major points are: (1) under future climate change scenarios, African rainfall patterns are expected to become more erratic and temperatures will be higher. (2) Climate change predictions in sub-Saharan Africa anticipate cereal yield losses. (3) Actually, with only three plant species accounting for more than 90 % of the world caloric intake, it is clear that an abundance of genetic resources and potentially beneficial crops are being neglected. (4) There is now ample evidence demonstrating Bambara groundnut superior tolerance to drought conditions relative to other legumes. (5) Bambara groundnut has a high nutritive content and can therefore be used in combatting malnutrition. (6) Bambara groundnut can be successfully intercropped with African staple cereals to improve productivity and contribute to soil fertility through nitrogen fixation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adjetey JA, Sey S (1998) Assessment of nitrogen requirements of bambara groundnut in a costal Savanna ecological zone. Appl Plant Sci 12:36–38

    Google Scholar 

  • Al Shareef I, Sparkes D, Azam-Ali S (2013) Temperature and drought stress effects on growth and development of bambara groundnut (Vigna subterannea L.). Exp Agric 50:72–89

    Article  Google Scholar 

  • Amadou HI, Bebeli PJ, Kaltsikes PJ (2001) Genetic diversity in bambara groundnut (Vigna subterranea L.) germplasm revealed by RAPD markers. Genome 44:995–999

    Article  CAS  PubMed  Google Scholar 

  • Amarteifio JO, Moholo D (1998) The chemical composition of four legumes consumed in Botswana. J Food Compos Anal 11:329–332. doi:10.1006/jfca.1998.0595

    Article  Google Scholar 

  • Andika DO, Abukutsa MO, Onyango JC, Stutzel H (2010) Roots spatial distribution and growth in bambara groundnuts (Vigna subterranea) and NERICA rice (Oryza sativa) intercrop system. ARPN J Agric Biol Sci 5:39–50

    Google Scholar 

  • Azam-Ali SN, Sesay A, Karikari SK, Massawe FJ, Aguilar-Manjarrez J, Bannayan M, Hampson KJ (2001) Assessing the potential of an underutilized crop – a case study using bambara groundnut. Exp Agric 37:433–472

    Article  Google Scholar 

  • Babiker AMA (1989) Growth, dry matter and yield of bambara groundnut (Vigna subterranea) and groundnut (Arachis hypogaea) under irrigated and droughted conditions. MSc thesis, University of Nottingham, Nottingham

    Google Scholar 

  • Bamshaiye OM, Adegbola JA, Bamishaiye EI (2011) Bambara groundnut: an under-utilized nut in Africa. Adv Agric Biotechnol 1:60–72

    Google Scholar 

  • Bates BC, Kundzewicz ZW, Wu S, Palutik JP (2008) Climate change and water: technical paper of the Intergovernmental Panel on Climate Change. IPCC Secretariat, Geneva, 210 pp

    Google Scholar 

  • Battisti DS, Naylor RL (2009) Historical warnings of future food insecurity with unprecedented seasonal heat. Science 9:240–244

    Article  CAS  Google Scholar 

  • Berchie JN, Opoku M, Adu-Dapaah H, Agyemang A, Sarkodie-Addo J, Asare E, Addo J, Akuffo H (2012) Evaluation of five bambara groundnut (Vigna subterranea (L.) Verdc.) landraces to heat and drought stress at Tono-Navrongo, Upper East Region of Ghana. Afr J Agric 7(2):250–256

    Google Scholar 

  • Berg A, de Noblet-Ducoudré N, Sultan B, Lengaigne M, Guimberteau M (2013) Projections of climate change impacts on potential C4 crop productivity over tropical regions. Agric For Meteorol 170:89–102

    Article  Google Scholar 

  • Boko M, Niang I, Nyong A, Vogel C (2007) Africa. In: Parry M et al (eds) Climate change adaptation and vulnerability: contribution of Working Group II to the IV assessment report of the IPCC Panel on Climate Change. Cambridge University Press, Cambridge/New York, pp 433–467

    Google Scholar 

  • Botero C, Weissing FJ, Wright JW, Rubenstein DR (2015) Evolutionary tipping points in the capacity to adapt to environmental change. Proc Natl Acad Sci U S A 112:184–189

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brough SH, Azam-Ali SN (1992) The effect of soil moisture on the proximate composition of bambara groundnut (Vigna subterranea L. Verdc). J Sci Food Agric 60:197–203

    Article  CAS  Google Scholar 

  • Brough SH, Taylo AJ, Azam-Ali SN (1993) The potential of bambara groundnut (Vigna subterranea) in vegetable milk production and basic protein functionality. Food Chem 47:277–283

    Article  CAS  Google Scholar 

  • CABI (2009) Rainfed agriculture: unlocking the potential. Cab International, Wallingford/Cambridge, MA

    Google Scholar 

  • Calzadilla A, Zhu T, Redhanz K, Tol RSJ, Ringler C (2009) Economy wide impacts of climate change in Sub-Saharan Africa, vol 873, IFPRI discussion paper. International Food Policy Research Institute, Washington, DC

    Google Scholar 

  • Chamberlin J, Jayne TS, Headey D (2014) Scarcity amid abundance? Reassessing the potential for cropland expansion in Africa. Food Policy 48:51–65

    Article  Google Scholar 

  • Collinson ST, Azam-Ali SN, Chavula KM, Hodson DA (1996) Growth, development and yield of bambara groundnut (Vigna subterranea) in response to soil moisture. J Agric Sci 126:307–318

    Article  Google Scholar 

  • Collinson ST, Clawson EJ, Azam-Ali SN, Black CR (1997) Effect of soil moisture defecits on the water relations of bambara groundnut (Vigna subterranea L. Verdc.). J Exp Bot 48:877–884

    Article  CAS  Google Scholar 

  • Collinson ST, Berchie J, Azam-Ali SN (1999) The effect of soil moisture on light interception and the conversion coefficient for three landraces of bambara groundnut (Vigna subterranea). J Agric Sci 133:151–157

    Article  Google Scholar 

  • Connolly-Boutin L, Smit B (2015) Climate change, food security, and livelihoods in sub-Saharan Africa. Reg Environ Change Advance Online Publication. doi:10.1007/s10113-015-0761-x

    Google Scholar 

  • Dakora FD, Atkins CA, Pate JS (1992) Effect of NO3 on N2 fixation and nitrogenous solutes of xylem in two nodulated West African geocarpic legumes, Kersting’s bean (Macrotyloma geocarpum L.), and bambara groundnut (Vigna subterranea (L.)). Plant and Soil 140:255–262

    Article  CAS  Google Scholar 

  • Dakora F (1998) Nodule function in symbiotic bambara groundnut (Vigna subterranea L.) and Kersting’s bean (Macrotyloma geocarpum L.) is tolerant of nitrate in the root medium. Ann Bot 82:687–690

    Article  CAS  Google Scholar 

  • Devereux S (2009) The Malawi famine of 2002. Inst Dev Stud 33:70–78

    Article  Google Scholar 

  • Diao X, Hazell P, Thurlow J (2010) The role of agriculture in African development. World Dev 38:1375–1383

    Article  Google Scholar 

  • Doku EV (1969) Growth habit and pod production in bambara groundnut (Voandzeia subterranea). Ghana J Agric Sci 2:91–95

    Google Scholar 

  • Doku EV, Karikari SK (1971) Bambara groundnut. Econ Bot 25:255–262

    Article  Google Scholar 

  • Druyan LM (2011) Studies of 21st-century precipitation trends over West Africa. Int J Climate 31:1415–1572

    Article  Google Scholar 

  • Easterling W, Aggarwal P, Batima P, Brander K, Erda L, Howden M, Kirilenko A, Morton J, Soussana JF, Schmidhuber J, Tubiello F (2007) Food, fibre and forest products. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability, Contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Ebert AW (2014) Potential of underutilized traditional vegetables and legume crops to contribute to food and nutritional security, income and more sustainable production systems. Sustainability 6:319–335

    Article  Google Scholar 

  • FAO (1997) The state of the world’s plant genetic resources for food and agriculture. FAO, Rome. Available at: ftp://ftp.fao.org/docrep/fao/meeting/015/w7324e.pdf

  • FAO (2005) FAO newsroom: Malawi facing serious food crisis. Available at www.fao.org/newsroom

  • FAO (2008) Climate change adaptation and mitigation in the food and agriculture sector. High-level conference on food security – the challenges of climate change and bioenergy. Available at ftp://ftp.fao.org/docrep/fao/meeting/013/ai782e.pdf

  • FAO (2010) FAOSTAT, 2010 data. Available at www.faostat.fao.org

  • FAO (2011a) FAOSTAT, 2011 data. Available at: www.faostat.fao.org

  • FAO (2011b) The status of food insecurity in the world. Food and Agriculture Organization, Rome

    Google Scholar 

  • FAO (2012) News article: neglected crops need a rethink. Available at www.fao.org/news/story/en/item/166368/icode/

  • FAO (2013a) Climate-smart agriculture sourcebook. Available at http://www.fao.org/climatechange/climatesmart/en/

  • FAO (2013b) INFOODS list of underutilized species contributing to the nutritional indicators for biodiversity Version 1.2 (December 2013). Available at http://www.fao.org/infoods/infoods/food-biodiversity/en/

  • FAO (2014) The Sahel crisis. Available at www.fao.org

  • Fischer G, Shah M, Tubiello FN, van Velthuizen H (2005) Socio-economic and climate change impacts on agriculture: an integrated assessment, 1990–2080. Philos Trans R Soc B Biol Sci 360:2067–2083

    Article  Google Scholar 

  • Ford JD, Berrang-Ford L, Bunce A, McKay C, Irwin M, Pearce T (2014) The status of climate change adaptation in Africa and Asia. Reg Environ Change. doi:10.1007/s10113-014-0648-2

    Google Scholar 

  • Frankema E (2014) Africa and the green revolution a historical perspective. Wagening J Life Sci 70:17–24. doi:10.1016/j.njas.2014.01.003

    Google Scholar 

  • Gitz V, Meybeck A (2012) Risks, vulnerabilities and resilience in a context of climate change. FAO and OECD Building Resilience for Adaptation to Climate Change in the Agriculture Sector, Rome

    Google Scholar 

  • Gowda CLL, Upadhyaya HD, Ghaffar MA (2007) Importance of under-utilized indigenous legumes in Asia-pacific region. Acta Hortic 752:95–98

    Article  Google Scholar 

  • Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131:872–877

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gworgwor NA (2002) The use of legume trap crops for control of Striga hermonthica (Del.) Benth. in sorghum (Sorghum bicolor L. Moench) in northern Nigeria. Mededelingen Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen Universiteit Gent 67:421–430

    Google Scholar 

  • Hagemann S, Chen C, Clark DB, Folwell S, Gosling SN, Haddeland I, Hanasaki N, Heinke J, Ludwig F, Voss F, Wiltshire AJ (2013) Climate change impact on available water resources obtained using multiple global climate and hydrology models. Earth Syst Dyn 4:129–144

    Article  Google Scholar 

  • Heller J, Begemann F, Mushonga J (1997). Bambara groundnut (Vigna subterranea (L.) Verdc.), Promoting the conservation and use of underutilized and neglected crops 9. In: Proceedings of the workshop on conservation and improvement of bambara groundnut (Vigna subterranea (L.) Verdc.), 14–16 Nov 1995, Harare. Institute of Plant Genetics and Crop Plant Research, Gatersleben/Department of Research and Specialist Services, Harare/International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Hepper FN (1963) The Bambara groundnut (Voandzeia subterranea) and Kersting’s groundnut (Kerstingiella geocarpa) wild in West Africa. Kew Bull 16:395–407

    Article  Google Scholar 

  • Holden C (2009) Climate change. Higher temperatures seen reducing global harvests. Science 323:193

    Article  CAS  PubMed  Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (2001) Climate change 2001: the scientific basis. Contribution of Working Group I to the third assessment report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Hulme M, Doherty R, Ngara T, New M, Lister D (2001) African climate change: 1900–2100. Climate Res 17:145–168

    Article  Google Scholar 

  • Hulugalle NR (2009) Intercropping millet and bambara groundnut on tied ridges in Sudan savannah of Burkina Faso. Arid Soil Res Rehabil 2:97–109

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2013) Fifth assessment report (AR5). Cambridge University Press, Cambridge/New York

    Google Scholar 

  • International Food Policy Research Institute (IFPRI) (2008) Agricultural growth and investment options for poverty reduction in Malawi. Available at www.ifpri.org

  • International Food Policy Research Institute (IFPRI) (2011) Climate change impacts on food security in Sub-Saharan Africa: insights from comprehensive climate change modeling. Available at www.ifpri.org

  • International Food Policy Research Institute (IFPRI) (2012a) Food and agriculture in Ethiopia. University of Pennsylvania Press, Philadelphia

    Google Scholar 

  • International Food Policy Research Institute (IFPRI) (2012b) Southern African agriculture and climate change: a comprehensive analysis – Kenya. Available at www.ifpri.org

  • International Food Policy Research Institute (IFPRI) (2012c) Southern African agriculture and climate change: a comprehensive analysis – Zimbabwe. Available at www.ifpri.org

  • International Union for Conservation of Nature (IUCN) (2011) Wani case studies: Pangani River Basin, Tanzania. Available at www.iucn.org

  • IPGRI (1999) Diversity for development. The new strategy of the International Plant Genetic Resources Institute. IPGRI, Rome

    Google Scholar 

  • IRRI (2011) Annual report 2011. Available at: http://books.irri.org/AR2011_content.pdf

  • James R, Washington R (2013) Changes in African temperature and precipitation associated with degrees of global warming. Clim Change 117(4):859–872

    Article  Google Scholar 

  • Jensen ES, Peoples MS, Boddey RM, Gresshoff P, Hauggaard-Nielsen H, Alves BJR, Morrison MJ (2011) Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. A review. Agron Sustain Dev 32:329–364

    Article  CAS  Google Scholar 

  • Jerven M, Duncan ME (2012) Revising GDP estimates in Sub-Saharan Africa: lessons from Ghana. Afr Stat J 15:12–24

    Google Scholar 

  • Jørgensen ST, Liu F, Ouédraogo M, Ntundu WH, Sarrazin J, Christiansen JL (2010) Drought responses of two bambara groundnut (Vigna subterranea L. Verdc.) landraces collected from a dry and a humid area of Africa. J Agron Crop Sci 196:412–422

    Google Scholar 

  • Jørgensen ST (2011) Effect of a short and severe intermittent drought on transpiration, seed yield, yield components, and harvest index in four landraces of bambara groundnut. Int J Plant Prod 5:25–36

    Google Scholar 

  • Karikari SK (2001) Resource capture and use in bambara groundnut/sorghum intercrops in Botswana. Crop Res 22:375–384

    Google Scholar 

  • Karikari SK (2002) Competitive ability and growth habit of bambara groundnut (Vigna subterranea (L.) Verdc) landraces for intercropping. Crop Res 23:259–268

    Google Scholar 

  • Karunaratne AS (2009) Modelling the response of bambara groundnut (Vigna sub-terranea L. Verdc.) for abiotic stress. PhD thesis, School of Biosciences, University of Nottingham, Nottingham, 176 pp

    Google Scholar 

  • Karunaratne AS, Azam-Ali SN, Al-Shareef I, Sesay A, Jørgensen ST, Crout NMJ (2010) Modelling the canopy development of bambara groundnut. Agric For Meteorol 150:1007–1015

    Article  Google Scholar 

  • Khan ZR, Midega CAO, Hassanali A, Pickett JA, Wadhams LJ (2007) Assessment of different legumes for the control of Striga hermonthica in maize and sorghum. Crop Sci 47:728–734

    Article  Google Scholar 

  • Khan ZR, Midega CAO, Pittchar JO, Murage AW, Birkett MA, Bruce TJA, Pickett JA (2014) Achieving food security for one million Sub-Saharan African poor through push – pull innovation by 2020. Philos Trans R Soc Lond B Biol Sci 369, 20120284

    Article  PubMed Central  PubMed  Google Scholar 

  • Kishinevsky BD, Zur M, Friedman Y, Meromi G, Ben-Moshe E, Nemas C (1996) Variation in nitrogen fixation and yield in landraces of bambara groundnut (Vigna subterranea L.). Field Crop Res 48:57–64

    Article  Google Scholar 

  • Knox JW, Rodríguez Díaz JA, Nixon DJ, Mkhwanazi M (2010) A preliminary assessment of climate change impacts on sugarcane in Swaziland. Agr Syst 103:63–72

    Article  Google Scholar 

  • Knox J, Hess T, Daccache A, Wheeler T (2012) Climate change impacts on crop productivity in Africa and South Asia. Environ Res Lett 7:034032

    Article  Google Scholar 

  • Kruger AC, Shongwe S (2004) Temperature trends in South Africa: 1960–2003. Int J Climatol 24(15):1929–1945

    Article  Google Scholar 

  • Kumaga F, Danso SKA, Zapata F (1994) Time-course of nitrogen fixation in two bambara groundnut (Vigna subterranea L. Verdc.) cultivars. Biol Fertil Soils 18:231–236

    Article  Google Scholar 

  • Kusangaya S, Warburton ML, Archer van Garderen E, Jewitt GPW (2014) Impacts of climate change on water resources in southern Africa: a review. Phys Chem Earth, Parts A/B/C 67–69:47–54

    Article  Google Scholar 

  • Lal R, Delgado JA, Groffman PM, Millar N, Dell C, Rotz A (2011) Management to mitigate and adapt to climate change. Soil Water Conserv 4:276–285

    Article  Google Scholar 

  • Langat MC, Okiror MA, Ouma JP, Gesimba RM (2006) Effect of intercropping maize and soybeans on Striga hermonthica parasitism and yield of maize. Agric Trop Subtrop 39:87–91

    Google Scholar 

  • Linnemann AR (1990) Cultivation of bambara groundnut in Western Province, Zambia. Report of a field study, Tropical crops communication no 16, Wageningen Agricultural University, Wageningen, Netherlands

    Google Scholar 

  • Linnemann AR, Azam-Ali SN (1993) Bambara groundnut (Vigna subterranea). In: Williams JT (ed) Underutilized crops: pulses and vegetables. Chapman & Hall, London, pp 13–57

    Google Scholar 

  • Liu J, Folberth C, Yang H, Rockström J, Abbaspour K, Zehnder AJB (2013) A global and spatially explicit assessment of climate change impacts on crop production and consumptive water use. PLoS One 8:e57750

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lobell DB, Field CB (2007) Global scale climate-crop yield relationships and the impacts of recent warming. Environ Res Lett 2:7

    Article  Google Scholar 

  • Lobell DB, Gourdji SM (2012) The influence of climate change on global crop productivity. Plant Physiol 160(4):1686–1697

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lobell DB, Marshall B, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319(5863):607–610

    Article  CAS  PubMed  Google Scholar 

  • Lynd LR, Woods J (2011) Perspective: a new hope for Africa. Nature 474:S20–S21

    Article  CAS  PubMed  Google Scholar 

  • Lyon B, DeWitt DG (2012) A recent and abrupt decline in the East African long rains. Geophys Res Lett 39(2):L02702

    Article  Google Scholar 

  • Massawe FJ, Dickinson JA, Roberts JA, Azam-Ali SN (2002) Genetic diversity in bambara groundnut (Vigna subterranea (L). Verdc) landraces revealed by AFLP markers. Genome 45:1175–1180

    Article  CAS  PubMed  Google Scholar 

  • Massawe FJ, Mwale SS, Azam-Ali SN, Roberts JA (2005) Breeding in bambara groundnut (Vigna subterranea (L.) Verdc.): strategic considerations. Afr J Biotechnol 4:463–471

    Google Scholar 

  • Mayes S, Massawe FJ, Alderson PG, Roberts JA, Azam-Ali SN, Hermann M (2011) The potential for underutilized crops to improve security of food production. J Exp Biol 63:1075–1079

    Google Scholar 

  • Mazahib AM, Nuha MO, Salawa IS, Babiker EE (2013) Some nutritional attributes of bambara groundnut as influenced by domestic processing. Int Food Res J 20:1165–1171

    CAS  Google Scholar 

  • Mkandawire CH (2007) Review of bambara groundnut (Vigna subterranea (L.) Verdc.) production in Sub-Sahara Africa. Agric J 2:464–470

    Google Scholar 

  • Molosiwa O, Basu SM, Stadler F, Azam-Ali S, Mayes S (2013) Assessment of genetic variability of bambara groundnut (Vigna subterranea (L.) Verde.) accessions using morphological traits and molecular markers. Acta Horticult 979:779–790

    Google Scholar 

  • Mukakalisa C, Kandawa-Schulz M, Mapaure I (2013) Genetic diversity in landraces of bambara groundnut found in Namibia using RAPD markers. Acta Hortic 979:683–688

    Article  Google Scholar 

  • Mukurumbira LM (1985) Effects of the rate of fertilizer nitrogen and previous grain legume crop on maize yields. Zimbabwe Agric J 82:177–179

    Google Scholar 

  • Müller C (2013) African lessons on climate change risks for agriculture. Annu Rev Nutr 33:395–411

    Article  PubMed  CAS  Google Scholar 

  • Mwale SS, Azam-Ali SN, Massawe FJ (2007a) Growth and development of bambara groundnut (Vigna subterranea) in response to soil moisture – 1. Dry matter and yield. Eur J Agron 26:345–353

    Article  Google Scholar 

  • Mwale SS, Azam-Ali SN, Massawe FJ (2007b) Growth and development of bambara groundnut (Vigna subterranea) in response to soil moisture. 2. Resource capture and conversion. Eur J Agron 26:354–362

    Article  Google Scholar 

  • Najafi MBH, Lee BH (2014) Biotechnology and its impact on food security and safety. Curr Nutr Food Sci 10:94–99

    Article  CAS  Google Scholar 

  • Ncube B, Twomlow SJ (2007) Productivity and residual benefit of grain legumes to sorghum under semi-arid conditions in southwestern Zimbabwe. Plant and Soil 299:1–15

    Article  CAS  Google Scholar 

  • Nikulin G, Jones C, Giorgi F, Asrar G, Büchner M, Cerezo-Mota R, Christensen OB, Déqué M, Fernandez J, Hänsler A, van Meijgaard E, Samuelsson P, Sylla MP, Sushama L (2012) Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations. J Climate 25(18):6057–6078

    Article  Google Scholar 

  • Odhiambo JA, Vanlauwe B, Tabu IM, Kanampiu F, Khan Z (2011) Effect of intercropping maize and soybeans on Striga hermonthica parasitism and yield of maize. Arch Phytopathol Plant Protect 44:158–167

    Article  Google Scholar 

  • Osonubi O (1985) Response of cowpeas (Vigna unguiculata (L.) Walp.) to progressive soil drought. Oecologia 66:554–557

    Article  Google Scholar 

  • Poulter NH, Caygill JC (1980) Vegetable milk processing and rehydration characteristics of bambara groundnut (Voandzeia subterranea L. Thouars). J Sci Food Agric 31:1158–1163

    Article  CAS  Google Scholar 

  • Qaim M (2011) Genetically modified crops and global food security. Front Econ Glob 10:29–54

    Article  Google Scholar 

  • Ringler C, Zhu T, Cai X, Koo J, Wang D (2010) Climate change impacts on food security in Sub-Saharan Africa: insights from comprehensive climate change scenarios, vol 1042, IFPRI discussion paper. International Food Policy Research Institute, Washington, DC

    Google Scholar 

  • Romney DL, Thorne P, Lukuyu B, Thornton PK (2003) Maize as food and feed in intensive smallholder systems: management options for improved integration in mixed farming systems of east and southern Africa. Field Crops Res 84:159–168. doi:10.1016/S0378-4290(03)00147-3

    Article  Google Scholar 

  • Rost S, Gerten D, Hoff H, Lucht W, Falkenmark M, Rockström J (2009) Global potential to increase crop production through water management in rainfed agriculture. Environ Res Lett 4, 9 pp

    Google Scholar 

  • Ruiz KB, Biondi S, Oses R, Acuña-Rodríguez IS, Antognoni F, Martinez-Mosqueira EA, Coulibaly A, Canahua-Murillo A, Pinto M, Zurita-Silva A, Bazile D, Jacobsen SE, Molina-Montenegro MA (2014) Quinoa biodiversity and sustainability for food security under climate change. A review. Agron Sustain Dev 34:349–359

    Article  Google Scholar 

  • Sadras VO, Milroy SP (1996) Soil-water thresholds for the responses of leaf expansion and gas exchange: a review. Field Crop Res 47:253–266

    Article  Google Scholar 

  • Sambo BE (2014) Endangered, neglected, indigenous resilient crops: a potential against climate change impact for sustainable crop productivity and food security. IOSR J Agric Vet Sci 7:34–41

    Article  Google Scholar 

  • Schaffnit-Chatterjee C (2014) Agricultural value chains in Sub-Saharan Africa. From a development challenge to a business opportunity. Deutsche Bank Research, Frankfurt

    Google Scholar 

  • Scherr SJ, Buck LE, Majanen T, Milder JC, Shames S (2011) Scaling-up landscape investment approaches in Africa: where do private market incentives converge with landscape restoration goals? Background paper for the investment forum on mobilizing investment in trees and landscape restoration. EcoAgriculture Partners and Program on Forests (PROFOR), Washington, DC

    Google Scholar 

  • Schlenker W, Lobell D (2010) Robust negative impacts of climate change on African agriculture. Environ Res Lett 5(1):014010

    Article  Google Scholar 

  • Schulze RE (2011) Approaches towards practical adaptive management options for selected water-related sectors in South Africa in a context of climate change. Water SA 37:621–646

    Article  Google Scholar 

  • Seneviratne SI, Nicholls N, Easterling D, Goodess CM, Kanae S, Kossin J, Luo Y, Marengo J, McInnes K, Rahimi M, Reichstein M, Sorteberg A, Vera C, Zhan X (2012) Changes in climate extremes and their impacts on the natural physical environment. In: Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK/New York, pp 109–230

    Google Scholar 

  • Shongwe ME, van Oldenborgh FJ, van den Hurk B, van Aalst M (2011) Projected changes in mean and extreme precipitation in Africa under global warming. Part II: East Africa. J Climate 24:3718–3733

    Article  Google Scholar 

  • Siise A, Massawe FJ (2013) Microsatellites based marker molecular analysis of Ghanaian bambara groundnut (Vigna subterranea (L.) Verdc.) landraces alongside morphological characterization. Genet Res Crop Evol 60:777–787

    Article  CAS  Google Scholar 

  • Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Bhavani S, Njau P, Herrera-Foessel S, Singh PK, Singh P, Govindan V (2011) The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu Rev Phytopathol 49:465–481

    Article  CAS  PubMed  Google Scholar 

  • Smith D, Vivekananda J (2007) A climate of conflict: the links between climate change, peace and war. International Alert, London

    Google Scholar 

  • Somasegaran P, Abaidao RC, Kumaga F (1990) Host-Bradyrhizobium relationships and nitrogen fixation in the bambara groundnut (Voandzeia subterranea (L.) Thou.). Trop Agric 67:137–142

    Google Scholar 

  • Somta P, Chankaew S, Rungnoi O, Srinives P, Scoles G (2011) Genetic diversity of the bambara groundnut (Vigna subterranea (L.) Verdc.) as assessed by SSR markers. Genome 54:898–910

    Google Scholar 

  • Sprent JI, Odee DW, Dakora FD (2010) African legumes: a vital but under-utilized resource. J Exp Bot 61:1257–1265

    Google Scholar 

  • Stout DG, Simpson GM (1978) Drought resistance of Sorghum bicolor. I. Drought avoidance mechanisms related to leaf water status. Can J Plant Sci 58:213–224

    Article  Google Scholar 

  • Sultan B, Roudier P, Quirion P, Alhassane A, Muller B, Dingkuhn M, Ciais P, Guimberteau M, Traore S, Baron C (2013) Assessing climate change impacts on sorghum and millet yields in the Sudanian and Sahelian savannas of West Africa. Environ Res Lett 8:014040

    Article  Google Scholar 

  • Svubure O, Mpepereki S, Makonese F (2010) Sustainability of maize-based cropping systems in rural areas of Zimbabwe: an assessment of the residual soil fertility effects of grain legumes on maize (Zea mays [L.]) under field conditions. Int J Eng Sci Technol 2:141–148

    Google Scholar 

  • Thorsted MD, Weiner J, Olesen JE (2006) Above- and below-ground competition between intercropped winter wheat Triticum aestivum and white Clover Trifolium repens. J Appl Ecol 43:237–245

    Article  Google Scholar 

  • Tilahun H, Teklu E, Michael M, Fitsum H, Awulachew SB (2011) Comparative performances of irrigated and rainfed agriculture in Ethiopia. World Appl Sci J 14:235–244

    Google Scholar 

  • Turner NC (1979) Drought resistance and adaptation to water deficits in crops. In: Mussel H, States RC (eds) Stress physiology in crop plants. Wiley, New York, pp 343–373

    Google Scholar 

  • UNDESA (United Nations Department of Economic and Social Affairs) (2011) World population prospects: the 2010 revision. United Nations Department of Economic and Social Affairs, Population Division, New York. www.un.org/esa/population/

  • UN-Water (2010) UN-Water annual report 2010. Available at: http://www.unwater.org/downloads/UN-Water_Annual_Report_2010.pdf

  • United Nations Development Programme (UNDP) (2006) Available at www.undp.org

  • United Nations Development Programme (UNDP) (2012) Africa human development report 2012. Regional Bureau for Africa (RBA). Available at www.undp.org/africa

  • United Nations Office for the Coordination of Humanitarian Affairs (OCHA) (2011) Eastern Africa drought humanitarian report. Available at www.reliefweb.int

  • United Nations Office for the Coordination of Humanitarian Affairs (OCHA) (2014) Strategic response plan: Sahel region. Available at www.unocha.org

  • Várallyay G (2010) The impact of climate change on soils and on their water management. Agron Res 8:385–396

    Google Scholar 

  • Vurayai R, Emongor V, Moseki B (2011) Physiological responses of bambara groundnut (Vigna subetteranea L. Verdc) to short periods of water stress during different developmental stages. Asian J Agric Sci 3:37–43

    Google Scholar 

  • Waha K, Müller C, Rolinski C (2013) Separate and combined effects of temperature and precipitation change on maize yields in sub-Saharan Africa for mid- to late-21st century. Global Planet Change 106:1–12

    Article  Google Scholar 

  • Williams AP, Funk C, Michaelsen J, Rauscher SA, Robertson I, Wils THG, Koprowski M, Eshetu Z, Loader NJ (2012) Recent summer precipitation trends in the Greater Horn of Africa and the emerging role of Indian Ocean sea surface temperature. Climate Dynam 39:2307–2328

    Article  Google Scholar 

  • Zinyengere N, Crespo O, Hachigonta S (2013) Crop response to climate change in southern Africa: a comprehensive review. Global Planet Change 111:118–126

    Article  Google Scholar 

Download references

Acknowledgments

Acknowledgements Special thanks to Crops for the Future (CFF) for sponsorship of this work under the BamYIELD research programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Cleasby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cleasby, P., Massawe, F.J., Symonds, R.S. (2016). Bambara Groundnut for Food Security in the Changing African Climate. In: Lichtfouse, E. (eds) Sustainable Agriculture Reviews. Sustainable Agriculture Reviews, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-26777-7_9

Download citation

Publish with us

Policies and ethics