Skip to main content

Towards an Objective Tool for Evaluating the Surgical Skill

  • Conference paper
  • First Online:
Book cover Computational Intelligence (IJCCI 2014)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 620))

Included in the following conference series:

Abstract

In this paper we present a system for the evaluation of the skill of a physician or physician student by means of the analysis of the movements of the hand. By comparing these movements to the ones of a set of subjects known to be skilled, we could tell if they are correct. We consider the execution of a typical surgical task: the suture. For the data acquisition we used the HiTEg sensory glove, then, we extract a set of features from data analysis and classify it by means of different kind of classifiers. We compared results from an RBF neural network and a Bayesian classifier. The system has been tested on a set of 18 subjects. We found that accuracy depends on the feature set that is used, and it can reach 94 % when we consider a set of 20 features: 9 of them are taken from data of bending sensor, 10 from accelerometers and gyroscopes, and one feature is the length of the gesture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cox, M., Irby, D.M., Reznick, R.K., MacRae, H.: Teaching surgical skills—changes in the wind. N. Engl. J. Med. 355, 2664–2669 (2006)

    Article  Google Scholar 

  2. Poloniecki, J., Valencia, O., Littlejohns, P.: Cumulative risk adjusted mortality chart for detecting changes in death rate: observational study of heart surgery. BMJ 316, 1697–1700 (1998)

    Article  Google Scholar 

  3. Furuya, S., Furuya, R., Ogura, H., Araki, T., Arita, T.: A study of 4,031 patients of transurethral resection of the prostate performed by one surgeon: learning curve, surgical results and postoperative complications. Hinyokika kiyo Acta urologica Japonica 52, 609–614 (2006)

    Google Scholar 

  4. Spencer, F.: Teaching and measuring surgical techniques: the technical evaluation of competence. Bull. Am. Coll. Surg. 63, 9–12 (1978)

    Google Scholar 

  5. Reiley, C.E., Lin, H.C., Yuh, D.D., Hager, G.D.: Review of methods for objective surgical skill evaluation. Surg. Endosc. 25, 356–366 (2011)

    Article  Google Scholar 

  6. Van Rij, A., McDonald, J., Pettigrew, R., Putterill, M., Reddy, C., Wright, J.: Cusum as an aid to early assessment of the surgical trainee. Br. J. Surg. 82, 1500–1503 (1995)

    Google Scholar 

  7. Hanna, G.B., Shimi, S.M., Cuschieri, A.: Randomised study of influence of two-dimensional versus three-dimensional imaging on performance of laparoscopic cholecystectomy. Lancet 351, 248–251 (1998)

    Article  Google Scholar 

  8. Santosuosso, G.L., Saggio, G., Sora, F., Sbernini, L., Di Lorenzo, N.: Advanced algorithms for surgical gesture classification. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3596–3600. IEEE 2014

    Google Scholar 

  9. Costantini, G., Saggio, G., Sbernini, L., Di Lorenzo, N., Di Paolo, F., Casali, D.: Surgical skill evaluation by means of a sensory glove and a neural network. In: 6th International Joint Conference on Computational Intelligence, 22–24 October 2014, Rome, Italy (IJCCI 2014)–Session: 6th International Conference on Fuzzy Computation Theory and Applications (FCTA 2014), SCITEPRESS–Science and Technology Publications 2014, pp. 105–10 (2014)

    Google Scholar 

  10. Traxer, O., Gettman, M.T., Napper, C.A., Scott, D.J., Jones, D.B., Roehrborn, C.G., et al.: The impact of intense laparoscopic skills training on the operative performance of urology residents. J. Urol. 166, 1658–1661 (2001)

    Article  Google Scholar 

  11. Derossis, A.M., Fried, G.M., Abrahamowicz, M., Sigman, H.H., Barkun, J.S., Meakins, J.L.: Development of a model for training and evaluation of laparoscopic skills. Am. J. Surg. 175, 482–487 (1998)

    Article  Google Scholar 

  12. Goff, B.A., Lentz, G.M., Lee, D., Houmard, B., Mandel, L.S.: Development of an objective structured assessment of technical skills for obstetric and gynecology residents. Obstet. Gynecol. 96, 146–150 (2000)

    Google Scholar 

  13. Rosen, J., Solazzo, M., Hannaford, B., Sinanan, M.: Objective laparoscopic skills assessments of surgical residents using Hidden Markov Models based on haptic information and tool/tissue interactions. Stud. Health Technol. Inform. 417–23 (2001)

    Google Scholar 

  14. Yamauchi, Y., Yamashita, J., Morikawa, O., Hashimoto, R., Mochimaru, M, Fukui, Y., et al.: Surgical skill evaluation by force data for endoscopic sinus surgery training system. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2002, pp. 44–51. Springer, 2002

    Google Scholar 

  15. Tashiro, Y., Miura, H., Nakanishi, Y., Okazaki, K., Iwamoto, Y.: Evaluation of skills in arthroscopic training based on trajectory and force data. Clin. Orthop. Relat. Res. 467, 546–552 (2009)

    Article  Google Scholar 

  16. Taffinder, N., Smith, S., Jansen, J., Ardehali, B., Russell, R., Darzi, A.: Objective measurement of surgical dexterity-validation of the Imperial College Surgical Assessment Device (ICSAD). Minim. Invasive Ther. Allied Tech. 7, 11 (1998)

    Google Scholar 

  17. Judkins, T.N., Oleynikov, D., Stergiou, N.: Objective evaluation of expert and novice performance during robotic surgical training tasks. Surg. Endosc. 23, 590–597 (2009)

    Article  Google Scholar 

  18. Fraser, S., Klassen, D., Feldman, L., Ghitulescu, G., Stanbridge, D., Fried, G.: Evaluating laparoscopic skills. Surg. Endosc. 17, 964–967 (2003)

    Article  Google Scholar 

  19. Saggio, G.: Mechanical model of flex sensors used to sense finger movements. Sens. Actuators A 185, 53–58 (2012)

    Article  Google Scholar 

  20. Saggio, G., Bocchetti, S., Pinto, G.A., Orengo, G., Giannini, F.: A novel application method for wearable bend sensors. In: ISABEL2009, 2nd International Symposium on Applied Sciences in Biomedical and Communication Technologies, Bratislava, Slovak Republic, 24–27 Nov 2009

    Google Scholar 

  21. Saggio, G., De Sanctis, M., Cianca, E., Latessa, G., De Santis, F., Giannini, F: Long term measurement of human joint movements for health care and rehabilitation purposes”. In: Wireless Vitae09—Wireless Communications, Vehicular Technology, Information Theory and Aerospace and Electronic Systems Technology, Aalborg (Denmark), pp. 674–678, 17–20 May 2009

    Google Scholar 

  22. Costantini, G., Saggio, G., Sbernini, L., Di Lorenzo, N., Di Paolo, F., Casali, D.: Surgical skill evaluation by means of a sensory glove and a neural network. In: Proceedings of the International Conference on Neural Computation Theory and Applications (NCTA-2014), pp 105–110 (2014)

    Google Scholar 

  23. Hall, M.A.: Correlation-based Feature Subset Selection for Machine Learning Hamilton. New Zealand (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Casali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Costantini, G., Saggio, G., Sbernini, L., Di Lorenzo, N., Casali, D. (2016). Towards an Objective Tool for Evaluating the Surgical Skill. In: Merelo, J.J., Rosa, A., Cadenas, J.M., Dourado, A., Madani, K., Filipe, J. (eds) Computational Intelligence. IJCCI 2014. Studies in Computational Intelligence, vol 620. Springer, Cham. https://doi.org/10.1007/978-3-319-26393-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26393-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26391-5

  • Online ISBN: 978-3-319-26393-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics