Skip to main content

Topological Structures in Computer-Aided Music Analysis

  • Chapter
  • First Online:

Abstract

We propose a spatial approach to musical analysis based on the notion of a chord complex. A chord complex is a labelled simplicial complex which represents a set of chords. The dimension of the elements of the complex and their neighbourhood relationships highlight the size of the chords and their intersections. Following a well-established tradition in set-theoretical and neo-Riemannian music analysis, we present the family of T/I complexes which represent classes of chords which are transpositionally and inversionally equivalent and which relate to the notion of Generalized Tonnetze. A musical piece is represented by a trajectory within a given chord complex. We propose a method to compute the compactness of a trajectory in any chord complex. Calculating the trajectory compactness of a piece in T/I complexes provides valuable information for music analysis and classification. We introduce different geometrical transformations on trajectories that correspond to different musical transformations. Finally, we present HexaChord, a software package dedicated to computer-aided music analysis with chord complexes, which implements most of the concepts discussed in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andreatta, M. (2008). Calcul algébrique et calcul cat´egoriel en musique: Aspects théoriques et informatiques. In Pottier, L., editor, Le calcul de la musique, pages 429–477. Publications de l’Université de Saint-Etienne.

    Google Scholar 

  • Andreatta, M. and Agon, C. (2003). Implementing algebraic methods in OpenMusic. In Proceedings of the International Computer Music Conference, Singapore.

    Google Scholar 

  • Bigo, L. (2013). Repr´esentations symboliques musicales et calcul spatial. PhD thesis, LACL/IRCAM, Université Paris-Est.

    Google Scholar 

  • Bigo, L. and Andreatta, M. (2014). A geometrical model for the analysis of pop music. Sonus, 35(1):36–48.

    Google Scholar 

  • Bigo, L., Ghisi, D., Spicher, A., and Andreatta, M. (2014). Spatial transformations in simplicial chord spaces. In Proceedings of the Fortieth International Computer Music Conference and Eleventh Sound and Music Computing Conference (ICMC/SMC 2014), pages 1112–1119, Athens, Greece.

    Google Scholar 

  • Bigo, L., Giavitto, J.-L., and Spicher, A. (2011). Building topological spaces for musical objects. In Mathematics and Computation in Music: Third International Conference, MCM 2011, Paris, France, June 2011, Proceedings, volume 6726 of Lecture Notes in Artificial Intelligence, pages 13–28. Springer.

    Google Scholar 

  • Callender, C., Quinn, I., and Tymoczko, D. (2008). Generalized voice-leading spaces. Science, 320(5874):346.

    Google Scholar 

  • Catanzaro, M. (2011). Generalized Tonnetze. Journal of Mathematics and Music, 5(2):117–139.

    Google Scholar 

  • Chew, E. (2002). The spiral array: An algorithm for determining key boundaries. In Music and Artificial Intelligence: Second International Conference, ICMAI 2002, Edinburgh, Scotland, UK, September 2002, Proceedings, pages 18–31. Springer.

    Google Scholar 

  • Chouvel, J.-M. (2009). Travers´ee du vent et de la lumière. Six remarques pour une phénoménologie de la création musicale. Available online at http://jeanmarc.chouvel.3.free.fr/textes/Traversee0.0.pdf.

  • Cohn, R. (1997). Neo-Riemannian operations, parsimonious trichords, and their “Tonnetz” representations. Journal of Music Theory, 41(1):1–66.

    Google Scholar 

  • Cohn, R. (2012). Audacious Euphony: Chromatic Harmony and the Triad’s Second Nature. Oxford University Press.

    Google Scholar 

  • Conklin, D. andWitten, I. H. (1995). Multiple viewpoint systems for music prediction. Journal of New Music Research, 24(1):51–73.

    Google Scholar 

  • Euler, L. (1739). Tentamen novae theoriae musicae ex certissismis harmoniae principiis dilucide expositae. Saint Petersburg Academy.

    Google Scholar 

  • Forte, A. (1973). The Structure of Atonal Music. Yale University Press.

    Google Scholar 

  • Giavitto, J.-L. and Michel, O. (2001). MGS: a rule-based programming language for complex objects and collections. In van den Brand, M. and Verma, R., editors, Electronic Notes in Theoretical Computer Science, volume 59, pages 286–304. Elsevier Science Publishers.

    Google Scholar 

  • Giavitto, J.-L. and Spicher, A. (2008). Simulation of self-assembly processes using abstract reduction systems. In Krasnogor, N., Gustafson, S., Pelta, D., and Verdegay, J. L., editors, Systems Self-Assembly: Multidisciplinary Snapshots, pages 199–223. Elsevier.

    Google Scholar 

  • Gollin, E. (1998). Some aspects of three-dimensional “Tonnetze”. Journal of Music Theory, 42(2):195–206.

    Google Scholar 

  • Holland, P. W. and Leinhardt, S. (1971). Transitivity in structural models of small groups. Small Group Research, 2:107–124.

    Google Scholar 

  • Hook, J. (2014). Generic sequences and the generic Tonnetz. Oxford Handbooks Online.

    Google Scholar 

  • Mandereau, J., Ghisi, D., Amiot, E., Andreatta, M., and Agon, C. (2011). Z-relation and homometry in musical distributions. Journal of Mathematics and Music, 5(2):83–98.

    Google Scholar 

  • Mazzola, G. et al. (2002). The Topos of Music: Geometric Logic of Concepts, Theory, and Performance. Birkhäuser.

    Google Scholar 

  • Pousseur, H. (1968). L’apothéose de Rameau. Essai sur la question harmonique. Musiques Nouvelles. Revue d’esthétique, 21, pages 105–172.

    Google Scholar 

  • Pousseur, H. (1998). Applications analytiques de la technique des réseaux. Revue belge de Musicologie, 52, pages 247–298.

    Google Scholar 

  • Rameau, J.-P. (1722). Traité de l’harmonie, reduite à ses principes naturels. Jean- Baptiste-Christophe Ballard.

    Google Scholar 

  • Tymoczko, D. (2012). The generalized Tonnetz. Journal of Music Theory, 56(1):1–52.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis Bigo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bigo, L., Andreatta, M. (2016). Topological Structures in Computer-Aided Music Analysis. In: Meredith, D. (eds) Computational Music Analysis. Springer, Cham. https://doi.org/10.1007/978-3-319-25931-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25931-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25929-1

  • Online ISBN: 978-3-319-25931-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics