Skip to main content

Optical and Structural Properties of Quantum Dots

  • Chapter
  • First Online:

Part of the book series: NanoScience and Technology ((NANO))

Abstract

We report (i) thickness dependent evolution of structural disorder, strain on crystalline planes and grain size in chemical bath deposited (CBD) CdS thin films studied through a combinative evaluation of the results of optical absorption, Raman spectroscopies, X-Ray diffraction (XRD) and Scanning Electron Microscopy (SEM). (ii) refer briefly to CdSexS1-x nanocrystals in liquid and (iii) address quantum size effect in CdSexS1-x quantum dots embedded in glass studied through steady state photoluminescence spectroscopy. The asymptotic optical absorption edge is red shifted while the long wavelength tail narrows with increasing thickness which is proportional to deposition time. We employ effective mass theory under quantum size effect to estimate average grain size from the energetic position of asymptotic optical absorption edge. The long wavelength tail optical absorption is due presumably to the micro-electric field induced by crystalline defects. The transmission probability through the potential energy barrier created by micro-electric field is calculated with the help of WKB (Wentzel, Kramers, Brillouin) approximation. We conclude that as the deposition time increases from 10 to 150 min, the average grain radius changes by 2 nm, Urbach energy and the electric micro-field decrease from 600 to 400 meV and 2240–820 kV/mm respectively. The shift in XRD pattern shows that the compressive strain decreases with growth. The Raman LO1 vibrational mode display an increase up to 22 min of deposition time and then a decrease.

This is a preview of subscription content, log in via an institution.

Notes

  1. 1.

    Derived by using [16].

References

  1. V. Wood, V. Bulović, Colloidal quantum dot light-emitting devices. Nano Rev. 1(5202), 1–7 (2010)

    Google Scholar 

  2. L. Liu, Q. Peng, Y. Li, An effective oxidation route to blue emission CdSe quantum dots. Inorg. Chem. 47(8), 3182–3187 (2008)

    Article  Google Scholar 

  3. J. Yoon, W. Chae, S. Im, Y. Kim, Mild synthesis of ultra-small CdSe quantum dots in ethylenediamine solution. Mater. Lett. 59, 1430–1433 (2005)

    Article  Google Scholar 

  4. C. Mell Donegá, P. Liljeroth, D. Vanmaekelbergh, Physicochemical evaluation of the hot-injection method, a synthesis route for monodisperse nanocrystals. Small 12, 1152–1116 (2005)

    Google Scholar 

  5. A.K. Arora, M. Rajalakshmi, T.R. Ravindran, Phonon confinement in nanostructured materials. Encycl. Nanosci. Nanotechnol. 8, 499–512 (2004)

    Google Scholar 

  6. H. Matsuo, T. Soma, Lattice dynamics of tetrahedral compounds with the local Heine‐Abarenkov model potential. Phys. Stat. Sol. (b) 124, 37–44 (1984)

    Google Scholar 

  7. F. Wu, J.W. Lewis, D.S. Kliger, J.Z. Zhang, Unusual excitation intensity dependence of fluorescence of CdTe nanoparticles. J. Chem. Phys. 118, 12 (2003)

    Google Scholar 

  8. M.H. Yükselici, Ç. Allahverdi, Size-dependent photo-induced shift of the first exciton band in CdTe quantum dots in glass prepared by a two-stage heat-treatment process. J. Lumin. 128(3), 537 (2008)

    Article  Google Scholar 

  9. V.M. Nikale, S.S. Shinde, C.H. Bhosale, K.Y. Rajpure, Physical properties of spray deposited CdTe thin films: PEC performance. J. Semicond. 32, 033001–1 (2011)

    Google Scholar 

  10. H.R. Moutinho, F.S. Hasoon, F. Abulfotuh, L.L. Kazmerski, Investigation of polycrystalline CdTe thin films deposited by physical vapor deposition, close-spaced sublimation, and sputtering. J. Vac. Sci. Technol., A 13, 2877 (1995)

    Article  Google Scholar 

  11. Ç. Allahverdi, M.H. Yükselici, Temperature dependence of absorption band edge of CdTe nanocrystals in glass. New J. Phys. 10, 103029 (2008)

    Article  ADS  Google Scholar 

  12. G. Gordillo, J.M. Florez, L.C. Hernandez, Preparation and characterization of CdTe thin films deposited by CSS. Sol. Energy Mater. Sol. Cells 37, 273–281 (1995)

    Article  Google Scholar 

  13. M. H. Yükselici, Ç. Allahverdi, Solid-phase precipitation of CdTe nanoparticles in glass, Phys. Stat. Sol. (b) 236(3), 649 (2003)

    Google Scholar 

  14. S. Lalitha, R. Sathyamoorthy, S. Senthilarasu, A. Subbarayan, K. Natarajan, Characterization of CdTe thin film—dependence of structural and optical properties on temperature and thickness. Sol. Energy Mater. Sol. Cells 82, 187–199 (2004)

    Article  Google Scholar 

  15. S. Wageh, A.A. Higazy, M.A. Algradee, optical properties and activation energy of a novel system of CdTe nanoparticles embedded in phosphate glass matrix. J. Modern Phys. 913–921 (2011)

    Google Scholar 

  16. P.T.C. Freire, M.A. Araujo Silva, V.C.S. Reynoso, A.R. Vaz, V. Lemos, Pressure Raman scattering of CdTe quantum dots. Phys. Rev. B 55(11), 6743 (1997)

    Google Scholar 

  17. S.S. Islam, S. Rath, K.P. Jain, S.C. Abbi, Forbidden one-LO-phonon resonant Raman scattering and multiphonon scattering in pure CdTe crystals. Phys. Rev. B 46(8), 4982 (1997)

    Google Scholar 

  18. V.S. Vinogradov, G. Karczewski, I.V. Kucherenko, N.N. Mel’nik, P. Fernandez, Raman spectra of structures with CdTe-, ZnTe-, and CdSe-based quantum dots and their relation to the fabrication technology. Phys. Solid State 50(1), 164–167 (2008)

    Google Scholar 

  19. V. Dzhagan, I. Lokteva, C. Himcinschi, X. Jin, J. Kolny-Olesiak, D.R.T. Zahn, Phonon Raman spectra of colloidal CdTe nanocrystals: effect of size, non-stoichiometry and ligand exchange. Nanoscale Res. Lett. 6, 79 (2011)

    Article  ADS  Google Scholar 

  20. A.G. Rolo, M.I. Vasilevskiy, N.P. Gaponik, A.L. Rogach, M.J.M. Gomes, Confined optical vibrations in CdTe quantum dots and clusters. Phys. Stat. Sol. (b) 229(1), 433–437 (2002)

    Article  ADS  Google Scholar 

  21. M.I. Vasilevskiy, A.G. Rolo, M.J.M. Gomes, O.V. Vikhrova, C. Ricolleau, Impact of disorder on optical phonons confined in CdS nano-crystallites embedded in a SiO2 matrix. J. Phys.: Condens. Matter 13, 3491–3509 (2001)

    ADS  Google Scholar 

  22. B.C. Ömür, A. Aşıkoğlu, Ç. Allahverdi, M.H. Yükselici, CdSxSe1-x quantum dots studied through optical absorption, steady state photoluminescence and resonant Raman spectroscopy. J. Mater. Sci. 45, 112–117 (2010)

    Google Scholar 

  23. Ç. Allahverdi, M.H. Yükselici, R. Turan, A. Seyhan, Photoluminescence spectroscopy in the study of growth of CdSexS1−x nanocrystals in glass. Semicond. Sci. Technol. 19, 1005 (2004)

    Google Scholar 

  24. N.F. Borrelli, D.W. Hall, H.J. Holland, D.W. Smith, Quantum confinement effects of semiconducting microcrystallites in glass. J. Appl. Phys. 61, 5399 (1987)

    Google Scholar 

  25. F. Hache, M.C. Kelin, D. Ricard, C. Flytzanis, Photoluminescence study of Schott commercial and experimental CdSSe-doped glasses: observation of surface states. J. Opt. Soc. Am. B. 8, 1802 (1991)

    Google Scholar 

  26. G. Mei, A photoluminescence study of CdSexS1-x semiconductor quantum dots. J. Phys.: Condens. Matter 4, 7521 (1992)

    Google Scholar 

  27. W.S.O. Rodden, C.N. Ironside, C.M.S. Torres, A study of the growth of CdSexS1-x crystallites within a glass matrix. Semicond. Sci. Technol. 9, 1839 (1994)

    Google Scholar 

  28. T.R. Ravindran, A.K. Arora, B. Balamurugan, B.R. Mehta, Inhomogeneous broadening in the photoluminescence spectrum of CdS nanoparticles. Nanostruct. Mater. 11, 603–609 (1999)

    Article  Google Scholar 

  29. F. Henneberger, J. Puls, C. Spiegelberg, A. Schülzgen, H. Rossman, V. Jungnickel, A.I. Ekimov, Optical and electro-optical properties of II-VI quantum dots. Semicond. Sci. Technol. 16, A41 (1991)

    Article  Google Scholar 

  30. A.D. Compaan, The status of and challenges in CdTe thin-film solar-cell technology. Mater. Res. Soc. Symp. Proc. 808, 545–555 (2004)

    Article  Google Scholar 

  31. J. Britt, C. Ferekides, Thin-film CdS/CdTe solar cell with 15.8 % efficiency. Appl. Phys. Lett. 62, 2851–2852 (1993)

    Article  ADS  Google Scholar 

  32. K.L. Chopra, P.D. Paulson, V. Dutta, Thin-film solar cells: an overview. Prog. Photovolt. Res. Appl. 12, 69–92 (2004)

    Article  Google Scholar 

  33. S. Chun, Y. Jung, J. Kim, D. Kim, The analysis of CdS thin film at the processes of manufacturing CdS/CdTe solar cells. J. Cryst. Growth 326, 152–156 (2011)

    Article  ADS  Google Scholar 

  34. C. Gretener, J. Perrenoud, L. Kranz, L. Kneer, R. Schmitt, S. Buecheler, A.N. Tiwari, CdTe/CdS thin film solar cells grown in substrate configuration. Prog. Photovolt. Res. Appl. (2012). doi:10.1002/pip.2233

    Article  Google Scholar 

  35. C. Sahu, S.N. Sahu, Preparation of CdS semiconductor thin films by a solution growth technique. Thin Solid Films 235, 17–19 (1993)

    Article  ADS  Google Scholar 

  36. R. Ortega-Borges, D. Lincot, Mechanism of chemical bath deposition of cadmium sulfide thin films in the ammonia-thiourea system in situ kinetic study and modelization. J. Electrochem. Soc. 140, 3464–3473 (1993)

    Article  ADS  Google Scholar 

  37. J.M. Doña, J. Herrero, Chemical bath deposition of CdS thin films: an approach to the chemical mechanism through study of the film microstructure. J. Electrochem. Soc. 144, 4081–4091 (1997)

    Article  ADS  Google Scholar 

  38. C. Guill’en, M. A. Mart′ınez, J. Herrero, Accurate control of thin film CdS growth process by adjusting the chemical bath deposition parameters. Thin Solid Films 335, 37–42 (1998)

    Google Scholar 

  39. R.S Mane, C.D. Lokhande, Chemical deposition method for metal chalcogenide thin films Mater. Chem. Phys. 65, 1–31 (2000)

    Google Scholar 

  40. J. Herrero, M.T. Gutiérrez, J.M. Doña, M.A. Martínez, A.M. Chaparro, R. Bayon, Photovoltaic windows by chemical bath deposition. Thin Solid Films 361362, 28–33 (2000)

    Google Scholar 

  41. R. Venugopal, P.-I. Lin, C.-C. Liu, Y.-T. Chen, Surface-enhanced Raman scattering and polarized photoluminescence from catalytically grown CdSe nanobelts and sheets. J. Am. Chem. Soc. 127, 11262–11268 (2005)

    Article  Google Scholar 

  42. E.S.F. Neto, N.O. Dantas, S.W. da Silva, P.C. Morais, M.A. Pereira da Silva, Confirming the lattice contraction in CdSe nanocrystals grown in a glass matrix by Raman scattering. J. Raman Spectrosc. 41, 1302–1305 (2010)

    Article  ADS  Google Scholar 

  43. A. Aşıkoğlu, M.H. Yükselici, Evolution of the energy band structure in chemical-bath-deposited CdS thin films studied by optical absorption spectroscopy. Semicond. Sci. Technol. 26, 055012 (2011)

    Article  ADS  Google Scholar 

  44. J.I. Pankove, Optical Processes in Semiconductors (Dover, New York, 1971)

    Google Scholar 

  45. F. Henneberger, J. Puls, A. Ch Spiegelberg, H.Rossman Schulzgen, V. Jungnickel, A.I. Ekimov, Optical and electro-optical properties of II-VI quantum dots. Semicond. Sci. Technol. 6, A41–A50 (1991)

    Article  Google Scholar 

  46. O. Zelya-Angel, Raman studies in CdS thin films in the evolution from cubic to hexagonal phase. Solid State Commun. 104, 161–166 (1997)

    Article  ADS  Google Scholar 

  47. S. Mishra, A. Ingale, U.N. Roy, A. Gupta, Study of annealing-induced changes in CdS thin films using X-ray diffraction and Raman spectroscopy. Thin Solid Films 516, 91–98 (2007)

    Article  ADS  Google Scholar 

  48. E.S. Freitas Neto, N.O. Dantas, S.W. da Silva, P.C. Morais, M.A. Pereira-da-Silva, A.J.D. Moreno, V. López-Richard, G.E. Marques, C. Trallero-Giner, Temperature-dependent Raman study of thermal parameters in CdS quantum dots, Nanotechnology 23, 1–8 (2012)

    Google Scholar 

  49. H. Hartmut, S.W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, 4th edn. (World Scientific, Singapure, 2004)

    Google Scholar 

  50. R.L. Liboff, Introductory Quantum Mechanics, 2nd edn. (Addison-Wesley, San Francisco, 1980)

    Google Scholar 

  51. J.D. Dow, D. Redfield, toward a unified theory of Urbach’s rule and exponential absorption edges. Phys. Rev. B 5, 594–610 (1972)

    Article  ADS  Google Scholar 

  52. M.V. Kurik, Urbach Rule. Phys. Stat. Sol. (a) 8, 9–45 (1971)

    Article  ADS  Google Scholar 

  53. G.D. Cody, T. Tiedje, B. Abeles, B. Brooks, Y. Goldstein, Disorder and the optical absorption edge of hydrogenated amorphoussilicon. J. Phys. Colloques C4, 301–304 (1981)

    Google Scholar 

  54. V. Spagnolo, G. Scamarcio, M. Lugara, G.C. Righini, Raman scattering in CdTe1-xSex and CdS1-xSex nanocrystals embedded in glass. Superlattices Microstruct. 16, 51–54 (1994)

    Article  ADS  Google Scholar 

  55. Landolt-Borstein, Numerical Data and Functional Relationships in Science and Technology, vol. III/41b. (Springer, Berlin, 1999)

    Google Scholar 

  56. X.S. Zhao, J. Shroeder, P. Persans, T. Bilodeau, Resonant-Raman-scattering and photoluminescence studies in glass-composite and colloidal CdS. Phys. Rev. B 43, 12580–12589 (1991)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported by Yıldız Technical University Scientific Research Project Coordination under project nos, 2012-01-01-KAP09 and 2012-01-01-KAP03 2011-01-01-DOP01. XRD and SEM were conducted at TÜBİTAK MRS Industrial services. We thank Dr. Barış Yağcı at Surface Science and Technology Center (KUYTAM), Koç University for conducting Raman measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Yükselici .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yükselici, M.H. et al. (2016). Optical and Structural Properties of Quantum Dots. In: Ünlü, H., Horing, N.J.M., Dabrowski, J. (eds) Low-Dimensional and Nanostructured Materials and Devices. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-25340-4_14

Download citation

Publish with us

Policies and ethics