Skip to main content

A Physics-Based Statistical Model for Human Gait Analysis

  • Conference paper
  • First Online:
Book cover Pattern Recognition (DAGM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9358))

Included in the following conference series:

Abstract

Physics-based modeling is a powerful tool for human gait analysis and synthesis. Unfortunately, its application suffers from high computational cost regarding the solution of optimization problems and uncertainty in the choice of a suitable objective energy function and model parametrization. Our approach circumvents these problems by learning model parameters based on a training set of walking sequences. We propose a combined representation of motion parameters and physical parameters to infer missing data without the need for tedious optimization. Both a k-nearest-neighbour approach and asymmetrical principal component analysis are used to deduce ground reaction forces and joint torques directly from an input motion. We evaluate our methods by comparing with an iterative optimization-based method and demonstrate the robustness of our algorithm by reducing the input joint information. With decreasing input information the combined statistical model regression increasingly outperforms the iterative optimization-based method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Al-Naser, M., Söderström, U.: Reconstruction of occluded facial images using asymmetrical principal component analysis. Integr. Comput. Aided Eng. 19(3), 273–283 (2012)

    Article  Google Scholar 

  2. Boiman, O., Shechtman, E., Irani, M.: In defense of nearest-neighbor based image classification. In: CVPR. IEEE Computer Society (2008)

    Google Scholar 

  3. Brubaker, M.A., Fleet, D.J.: The kneed walker for human pose tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (2008)

    Google Scholar 

  4. Brubaker, M.A., Sigal, L., Fleet, D.J.: Estimating contact dynamics. In: IEEE 12th International Conference on Computer Vision, ICCV 2009, September 27 - October 4 2009, Kyoto, Japan, pp. 2389–2396 (2009)

    Google Scholar 

  5. Chow, C.K., Jacobson, D.: Studies of human locomotion via optimal programming. Math. Biosci. 10(3–4), 239–306 (1971)

    Article  Google Scholar 

  6. Fregly, B.J., Reinbolt, J.A., Rooney, K.L., Mitchell, K.H., Chmielewski, T.L.: Design of patient-specific gait modifications for knee osteoarthritis rehabilitation. IEEE Trans. Biomed. Eng. 54(9), 1687–1695 (2007)

    Article  Google Scholar 

  7. Jiang, Z., Lin, Z., Davis, L.S.: Learning a discriminative dictionary for sparse coding via label consistent K-SVD. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1697–1704 (2011)

    Google Scholar 

  8. Liu, C.K., Hertzmann, A., Popović, Z.: Learning physics-based motion style with nonlinear inverse optimization. ACM Trans. Graph. 24(3), 1071–1081 (2005)

    Article  Google Scholar 

  9. Powers, C.M.: The influence of abnormal hip mechanics on knee injury: a biomechanical perspective. JOSPT 40, 42–51 (2010)

    Article  Google Scholar 

  10. Rao, G., Amarantini, D., Berton, E., Favier, D.: Influence of body segments’ parameters estimation models on inverse dynamics solutions during gait. J. Biomech. 39(8), 1531–1536 (2006)

    Article  Google Scholar 

  11. Schmalz, T., Blumentritt, S., Jarasch, R.: Energy expenditure and biomechanical characteristics of lower limb amputee gait: the influence of prosthetic alignment and different prosthetic components. Gait Posture 16(3), 255–263 (2002)

    Article  Google Scholar 

  12. Schmidt, N., Okada, M.: Optimal design of nonlinear springs in robot mechanism: simultaneous design of trajectory and spring force profiles. Adv. Robot. 27(1), 33–46 (2013)

    Article  Google Scholar 

  13. Sok, K.W., Kim, M., Lee, J.: Simulating biped behaviours from human motion data. In: Proceedings of the ACM SIGGRAPH 2007, p. 107 (2007)

    Google Scholar 

  14. Troje, N.F.: Decomposing biological motion: a framework for analysis and synthesis of human gait patterns. J. Vis. 2(5), 371–387 (2002)

    Article  Google Scholar 

  15. Tsai, Y.Y., Lin, W.C., Cheng, K.B., Lee, J., Lee, T.Y.: Real-time physics-based 3d biped character animation using an inverted pendulum model. IEEE Trans. Vis. Comput. Graph. 16(2), 325–337 (2010)

    Article  Google Scholar 

  16. Vaughan, C.L.: Are joint torques the holy grail of human gait analysis? Hum. Mov. Sci. 15(3), 423–443 (1996)

    Article  Google Scholar 

  17. Wei, X., Min, J., Chai, J.: Physically valid statistical models for human motion generation. ACM Trans. Graph. 30(3), 19:1–19:10 (2011)

    Article  Google Scholar 

  18. Whittle, M.W.: Clinical gait analysis: a review. Hum. Mov. Sci. 15(3), 369–387 (1996)

    Article  Google Scholar 

  19. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)

    Article  Google Scholar 

  20. Xiang, Y., Arora, J.S., Abdel-Malek, K.: Optimization-based prediction of asymmetric human gait. J. Biomech. 44(6), 683–693 (2011)

    Article  Google Scholar 

  21. Yin, K., Loken, K., van de Panne, M.: Simbicon: simple biped locomotion control. ACM Trans. Graph. 26(3) (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petrissa Zell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zell, P., Rosenhahn, B. (2015). A Physics-Based Statistical Model for Human Gait Analysis. In: Gall, J., Gehler, P., Leibe, B. (eds) Pattern Recognition. DAGM 2015. Lecture Notes in Computer Science(), vol 9358. Springer, Cham. https://doi.org/10.1007/978-3-319-24947-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24947-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24946-9

  • Online ISBN: 978-3-319-24947-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics