Skip to main content

Digital Waste Sorting: A Goal-Based, Self-Learning Approach to Label Spam Email Campaigns

  • Conference paper
  • First Online:
Book cover Security and Trust Management (STM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9331))

Included in the following conference series:

Abstract

Fast analysis of correlated spam emails may be vital in the effort of finding and prosecuting spammers performing cybercrimes such as phishing and online frauds. This paper presents a self-learning framework to automatically divide and classify large amounts of spam emails in correlated labeled groups. Building on large datasets daily collected through honeypots, the emails are firstly divided into homogeneous groups of similar messages (campaigns), which can be related to a specific spammer. Each campaign is then associated to a class which specifies the goal of the spammer, i.e. phishing, advertisement, etc. The proposed framework exploits a categorical clustering algorithm to group similar emails, and a classifier to subsequently label each email group. The main advantage of the proposed framework is that it can be used on large spam emails datasets, for which no prior knowledge is provided. The approach has been tested on more than 3200 real and recent spam emails, divided in more than 60 campaigns, reporting a classification accuracy of 97 % on the classified data.

This research has been partially supported by EU Seventh Framework Programme (FP7/2007–2013) under grant no 610853 (COCO Cloud), MIUR-PRIN Security Horizons and Natural Sciences and Engineering Research Council of Canada (NSERC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spam archive. http://untroubled.org/spam/

  2. Federal trade commission (2009). http://www.consumer.ftc.gov

  3. Almomani, A., Gupta, B.B., Atawneh, S., Meulenberg, A., Almomani, E.: A survey of phishing email filtering techniques. IEEE Commun. Surv. Tutorials 15(4), 2070–2090 (2013)

    Article  Google Scholar 

  4. Beleites, C., Neugebauer, U., Bocklitz, T., Krafft, C., Popp, J.: Sample size planning for classification models. Anal. Chim. Acta 760, 25–33 (2013)

    Article  Google Scholar 

  5. Benczur, A.A., Csalogany, K., Sarlos, T., Uher, M.: Spamrank-fully automatic link spam detection work in progress. In: Proceedings of the First International Workshop on Adversarial Information Retrieval on the Web (2005)

    Google Scholar 

  6. Bergholz, A., PaaB, G., Reichartz, F., Strobel, S., Birlinghoven, S.: Improved phishing detection using model-based features. In: CEAS (2008)

    Google Scholar 

  7. Calais, P., Douglas, E.V.P., Dorgival, O.G., Wagner, M., Cristine, H., Klaus, S.: A campaign-based characterization of spamming strategies. In: CEAS (2008)

    Google Scholar 

  8. Chen, T.C., Stepan, T., Dick, S., Miller, J.: An anti-phishing system employing diffused information. ACM Trans. Inf. Syst. Secur. 16(4), 16:1–16:31 (2014)

    Google Scholar 

  9. da Cruz Nassif, L., Hruschka, E.: Document clustering for forensic analysis: An approach for improving computer inspection. IEEE Trans. Inf. Forensics Secur. 8(1), 46–54 (2013)

    Article  Google Scholar 

  10. Dinh, S., Azeb, T., Fortin, F., Mouheb, D., Debbabi, M.: Spam campaign detection, analysis, and investigation. Digit. Invest. 12(1), S12–S21 (2015)

    Article  Google Scholar 

  11. Fette, I., Sadeh, N., Tomasic, A.: Learning to detect phishing emails. In: Proceedings of the 16th International Conference on World Wide Web, pp. 649–656. ACM (2007)

    Google Scholar 

  12. Gansterer, W.N., Pölz, D.: E-Mail classification for phishing defense. In: Boughanem, M., Berrut, C., Mothe, J., Soule-Dupuy, C. (eds.) ECIR 2009. LNCS, vol. 5478, pp. 449–460. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Gao, H., Hu, J., Wilson, C., Li, Z., Chen, Y., Zhao, B.: Detecting and characterizing social spam campaigns. In: Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement, IMC 2010, pp. 35–47. ACM, New York (2010)

    Google Scholar 

  14. Hadjidj, R., Debbabi, M., Lounis, H., Iqbal, F., Szporer, A., Benredjem, D.: Towards an integrated e-mail forensic analysis framework. Digit. Invest. 5(34), 124–137 (2009)

    Article  Google Scholar 

  15. Henderson, L.: Crimes of Persuasion: Schemes, Scams, Frauds : how Con Artists Will Steal Your Savings and Inheritance Through Telemarketing Fraud Investment Schemes and Consumer Scams. Coyoto Ridge Press, Azilda (2003)

    Google Scholar 

  16. Kanich, C., Kreibich, C., Levchenko, K., Enright, B., Voelker, G.M., Paxson, V., Savage, S.: Spamalytics: An empirical analysis of spam marketing conversion. In: Proceedings of the 15th ACM Conference on Computer and Communications Security, CCS 2008, pp. 3–14. ACM, New York (2008)

    Google Scholar 

  17. Kanich, C., Weavery, N., McCoy, D., Halvorson, T., Kreibichy, C., Levchenko, K., Paxson, V., Voelker, G., Savage, S.: Show me the money: Characterizing spam-advertised revenue. In: Proceedings of the 20th USENIX Conference on Security, SEC 2011. USENIX Association, Berkeley (2011)

    Google Scholar 

  18. Kreibich, C., Kanich, C., Levchenko, K., Enright, B., Voelker, G., Paxson, V., Savage, S.: Spamcraft: An inside look at spam campaign orchestration. In: Proceedings of the 2nd USENIX Conference on Large-scale Exploits and Emergent Threats: Botnets, Spyware, Worms, and More, LEET 2009. USENIX Association, Berkeley (2009)

    Google Scholar 

  19. Labs, M.A.: Mcafee threats report: 2015 (2015). http://mcafee.com

  20. Narang, S.: Cryptolocker alert: Millions in the uk targeted in mass spam campaign. (2013). http://www.symantec.com/connect/tr/blogs/cryptolocker-alert-millions-uk-targeted-mass-spam-campaign

  21. Pathak, A., Qian, F., Hu, Y.C., Mao, Z.M., Ranjan, S.: Botnet spam campaigns can be long lasting: Evidence, implications, and analysis. SIGMETRICS Perform. Eval. Rev. 37(1), 13–24 (2009)

    Google Scholar 

  22. Seewald, A.K.: An evaluation of naive bayes variants in content-based learning for spam filtering. Intell. Data Anal. 11(5), 497–524 (2007)

    Google Scholar 

  23. Shannon, C.E.: A mathematical theory of communication. SIGMOBILE Mob. Comput. Commun. Rev. 5(1), 3–55 (2001)

    Article  MathSciNet  Google Scholar 

  24. Sheikhalishahi, M., Mejri, M., Tawbi, N.: Clustering spam emails into campaigns. In: 1st International Conference on Information Systems Security and Privacy (2015)

    Google Scholar 

  25. Sheikhalishahi, M., Saracino, A., Mejri, M., Tawbi, N., Martinelli, F.: Fast and effective clustering of spam emails based on structural similarity (2015). http://goo.gl/zlzHNl

  26. Tillman, K.: How many internet connections are in the world? right. now (2013). http://blogs.cisco.com/news/cisco-connections-counter

  27. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 1, pp. I-511–I-518 (2001)

    Google Scholar 

  28. Wang, D., Irani, D., Pu, C.: A study on evolution of email spam over fifteen years. In: 2013 9th International Conference on Collaborative Computing: Networking, Applications and Worksharing (Collaboratecom), pp. 1–10, October 2013

    Google Scholar 

  29. Wei, C., Sprague, A., Warner, G., Skjellum, A.: Mining spam email to identify common origins for forensic application. In: Proceedings of the 2008 ACM symposium on Applied computing, SAC 2008, pp. 1433–1437. ACM, New York (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mina Sheikhalishahi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Sheikhalishahi, M., Saracino, A., Mejri, M., Tawbi, N., Martinelli, F. (2015). Digital Waste Sorting: A Goal-Based, Self-Learning Approach to Label Spam Email Campaigns. In: Foresti, S. (eds) Security and Trust Management. STM 2015. Lecture Notes in Computer Science(), vol 9331. Springer, Cham. https://doi.org/10.1007/978-3-319-24858-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24858-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24857-8

  • Online ISBN: 978-3-319-24858-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics