Skip to main content

Tongue Mesh Extraction from 3D MRI Data of the Human Vocal Tract

  • Conference paper
  • First Online:
Perspectives in Shape Analysis

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

In speech science, analyzing the shape of the tongue during human speech production is of great importance. In this field, magnetic resonance imaging (MRI) is currently regarded as the preferred modality for acquiring dense 3D information about the human vocal tract . However, the desired shape information is not directly available from the acquired MRI data. In this chapter, we present a minimally supervised framework for extracting the tongue shape from a 3D MRI scan. It combines an image segmentation approach with a template fitting technique and produces a polygon mesh representation of the identified tongue shape. In our evaluation, we focus on two aspects: First, we investigate whether the approach can be regarded as independent of changes in tongue shape caused by different speakers and phones. Moreover, we check whether an average user who is not necessarily an anatomical expert may obtain acceptable results. In both cases, our framework shows promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ultrax: Real-time tongue tracking for speech therapy using ultrasound (2014). http://www.ultrax-speech.org/. Accessed 5 May 2015

  2. Allen, B., Curless, B., Popović, Z.: The space of human body shapes: reconstruction and parameterization from range scans. ACM Trans. Graph. 22 (3), 587–594 (2003). doi:10.1145/1201775.882311

    Article  Google Scholar 

  3. Baker, A.: A biomechanical tongue model for speech production based on MRI live speaker data (2011). http://www.adambaker.org/qmu.php. Accessed 5 May 2015

    Google Scholar 

  4. Blandin, R., Arnela, M., Laboissière, R., Pelorson, X., Guasch, O., Hirtum, A.V., Laval, X.: Effects of higher order propagation modes in vocal tract like geometries. J. Acoust. Soc. Am. 137 (2), 832–843 (2015). doi:10.1121/1.4906166

    Article  Google Scholar 

  5. Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., Levy, B.: Polygon Mesh Processing. A K Peters/CRC Press, Natick (2010)

    Book  Google Scholar 

  6. Boykov, Y., Funka-Lea, G.: Graph cuts and efficient ND image segmentation. Int. J. Comput. Vis. 70 (2), 109–131 (2006). doi:10.1007/s11263-006-7934-5

    Article  Google Scholar 

  7. Brunton, A., Salazar, A., Bolkart, T., Wuhrer, S.: Review of statistical shape spaces for 3D data with comparative analysis for human faces. Comput. Vis. Image Underst. 128, 1–17 (2014). doi:10.1016/j.cviu.2014.05.005

    Article  Google Scholar 

  8. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10 (2), 266–277 (2001). doi:10.1109/83.902291

    Article  MATH  Google Scholar 

  9. Engwall, O.: Can audio-visual instructions help learners improve their articulation? – an ultrasound study of short term changes. In: 9th Annual Conference of the International Speech Communication Association (Interspeech), Brisbane, pp. 2631–2634 (2008)

    Google Scholar 

  10. Eryildirim, A., Berger, M.O.: A guided approach for automatic segmentation and modeling of the vocal tract in MRI images. In: European Signal Processing Conference (EUSIPCO), Barcelona, pp. 61–65 (2011)

    Google Scholar 

  11. Grady, L.: Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28 (11), 1768–1783 (2006). doi:10.1109/TPAMI.2006.233

    Article  Google Scholar 

  12. Harandi, N.M., Abugharbieh, R., Fels, S.: 3D segmentation of the tongue in MRI: a minimally interactive model-based approach. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 3 (4), 178–188 (2015). doi:10.1080/21681163.2013.864958

    Google Scholar 

  13. Hewer, A., Steiner, I., Wuhrer, S.: A hybrid approach to 3D tongue modeling from vocal tract MRI using unsupervised image segmentation and mesh deformation. In: 15th Annual Conference of the International Speech Communication Association (Interspeech), Singapore, pp. 418–421 (2014)

    Google Scholar 

  14. Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Eurographics Symposium on Geometry Processing (SGP), Cagliari, pp. 61–70 (2006). doi:10.2312/SGP/SGP06/061-070

    Google Scholar 

  15. Ladefoged, P.: A Course in Phonetics, 2nd edn. Harcourt Brace Jovanovich, New York (1982)

    Google Scholar 

  16. Lee, J., Woo, J., Xing, F., Murano, E.Z., Stone, M., Prince, J.L.: Semi-automatic segmentation of the tongue for 3D motion analysis with dynamic MRI. In: IEEE 10th International Symposium on Biomedical Imaging (ISBI), San Francisco, pp. 1465–1468 (2013). doi:10.1109/ISBI.2013.6556811

    Google Scholar 

  17. Li, C., Kao, C.Y., Gore, J.C., Ding, Z.: Implicit active contours driven by local binary fitting energy. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Minneapolis, pp. 1–7 (2007). doi:10.1109/CVPR.2007.383014

    Google Scholar 

  18. Li, H., Adams, B., Guibas, L.J., Pauly, M.: Robust single-view geometry and motion reconstruction. ACM Trans. Graph. 28 (5), 175:1–175:10 (2009). doi:10.1145/1618452.1618521

    Google Scholar 

  19. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Program. 45 (1–3), 503–528 (1989). doi:10.1007/BF01589116

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, J., Udupa, J.K.: Oriented active shape models. IEEE Trans. Med. Imaging 28 (4), 571–584 (2009). doi:10.1109/TMI.2008.2007820

    Article  Google Scholar 

  21. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79 (1), 12–49 (1988). doi:10.1016/0021-9991(88)90002-2

    Article  MathSciNet  MATH  Google Scholar 

  22. Peng, T., Kerrien, E., Berger, M.O.: A shape-based framework to segmentation of tongue contours from MRI data. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Dallas, pp. 662–665 (2010). doi:10.1109/ICASSP.2010.5495123

    Google Scholar 

  23. Raeesy, Z., Rueda, S., Udupa, J.K., Coleman, J.: Automatic segmentation of vocal tract MR images. In: IEEE 10th International Symposium on Biomedical Imaging (ISBI), San Francisco, pp. 1328–1331 (2013). doi:10.1109/ISBI.2013.6556777

    Google Scholar 

  24. Witten, D.M.: Penalized unsupervised learning with outliers. Stat. Interface 6 (2), 211–221 (2013). doi:10.4310/SII.2013.v6.n2.a5

    Article  MathSciNet  MATH  Google Scholar 

  25. Wuhrer, S., Lang, J., Tekieh, M., Shu, C.: Finite element based tracking of deforming surfaces. Graph. Models 77, 1–17 (2015). doi:10.1016/j.gmod.2014.10.002

    Article  Google Scholar 

Download references

Acknowledgements

This study uses data from work supported by EPSRC Healthcare Partnerships Grant number EP/I027696/1 (“Ultrax”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Hewer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Hewer, A., Wuhrer, S., Steiner, I., Richmond, K. (2016). Tongue Mesh Extraction from 3D MRI Data of the Human Vocal Tract. In: Breuß, M., Bruckstein, A., Maragos, P., Wuhrer, S. (eds) Perspectives in Shape Analysis. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-24726-7_16

Download citation

Publish with us

Policies and ethics