Skip to main content

Several Multiplexes in the Same City: The Role of Socioeconomic Differences in Urban Mobility

  • Chapter
  • First Online:
Interconnected Networks

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

In this work we analyze the architecture of real urban mobility networks from the multiplex perspective. In particular, based on empirical data about the mobility patterns in the cities of Bogotá and Medellín, each city is represented by six multiplex networks, each one representing the origin-destination trips performed by a subset of the population corresponding to a particular socioeconomic status. The nodes of each multiplex are the different urban locations whereas links represent the existence of a trip from one node (origin) to another (destination). On the other hand, the different layers of each multiplex correspond to the different existing transportation modes. By exploiting the characterization of multiplex transportation networks combining different transportation modes, we aim at characterizing the mobility patterns of each subset of the population. Our results show that the socioeconomic characteristics of the population have an extraordinary impact in the layer organization of these multiplex systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stouffer, S.A.: Intervening opportunities: a theory relating mobility and distance. Am. Sociol. Rev. 5, 845–867 (1940)

    Article  Google Scholar 

  2. Zipf, G.K.: The P 1 P 2D hypothesis: on the intercity movement of persons. Am. Sociol. Rev. 11, 677–686 (1946)

    Article  Google Scholar 

  3. Erlander, S., Stewart, N.: The Gravity Model in Transportation Analysis: Theory and Extensions. VSP, Utrecht (1990)

    MATH  Google Scholar 

  4. Batty, M.: The size, scale, and shape of cities. Science 319, 769–771 (2008)

    Article  ADS  Google Scholar 

  5. Porta, S., Latora, V., Wang, F., Rueda, S., Strano, E., Scellato, S., Cardillo, A., Belli, E., Cárdenas, F., Cormenzana, B., Latora, L.: Street centrality and location of economic activities in Barcelona. Urban Stud. 49, 1471–1488 (2011)

    Article  Google Scholar 

  6. Porta, S., Latora, V., Wang, F., Strano, E., Cardillo, A., Scellato, S., Iacoviello, V., Messora, R.: Street centrality and densities of retail and services in Bologna, Italy. Environ. Plan. B Plan. Design 36, 450–465 (2009)

    Article  Google Scholar 

  7. Guimerá, R., Mossa, S., Turtschi, A., Amaral, L.A.N.: The worldwide air transportation network: anomalous centrality, community structure, and cities’ global roles. Proc. Nat. Acad. Sci. U. S. A. 102, 7794–7799 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Asgari, F., Gauthier, V., Becker, M.: A survey on human mobility and its applications. arXiv:1307.0814 (2013)

    Google Scholar 

  9. Yan, X.-Y., Han, X.-P., Wang, B.-H., Zhou, T.: Diversity of individual mobility patterns and emergence of aggregated scaling laws. Sci. Rep. 3, 2678 (2013)

    ADS  Google Scholar 

  10. González, M.C., Hidalgo, C.A., Barabási, A.-L.: Understanding individual human mobility patterns. Nature 453, 779–782 (2008)

    Article  ADS  Google Scholar 

  11. Wang, P., Hunter, T., Bayen, A.M., Schechtner, K., González, M.C.: Understanding road usage patterns in urban areas. Sci. Rep. 2, 1001 (2012)

    ADS  Google Scholar 

  12. Roth, C., Kang, S.M., Batty, M., Barthélemy, M.: Structure of urban movements: polycentric activity and entangled hierarchical flows. PLoS ONE 6, e15923 (2011)

    Article  ADS  Google Scholar 

  13. Helbing, D., Buzna, L., Johansson, A., Werner, T.: Self-organized pedestrian crowd dynamics: experiments, simulations, and design solutions. Trans. Sci. 39, 1–24 (2005)

    Article  Google Scholar 

  14. Bazzani, A., Giorgini, B., Rambaldi, S., Turchetti, G.: Complexcity: modeling urban mobility. Adv. Complex Syst. (ACS) 10, 255–270 (2007)

    Google Scholar 

  15. Song, C., Koren, T., Wang, P., Barabási, A.-L.: Modelling the scaling properties of human mobility. Nat. Phys. 6, 818–823 (2010)

    Article  Google Scholar 

  16. Simini, F., González, M.C., Maritan, A., Barabási, A.-L.: A universal model for mobility and migration patterns. Nature 484, 96–100 (2012)

    Article  ADS  Google Scholar 

  17. Eubank, S., Guclu, H., Kumar, V., Marathe, M.: Modelling disease outbreaks in realistic urban social networks. Nature 429, 180–184, (2004)

    Article  ADS  Google Scholar 

  18. Colizza, V., Barrat, A., Barthélemy, M., Vespignani, A.: The role of the airline transportation network in the prediction and predictability of global epidemics. Proc. Nat. Acad. Sci. U. S. A. 103, 2015–2020 (2006)

    Article  ADS  MATH  Google Scholar 

  19. Kleinberg, J.: Computing: the wireless epidemic. Nature 449, 287 (2007)

    Article  ADS  Google Scholar 

  20. Balcan, D., Colizza, V., Gonçalves, B., Hu, H., Ramasco, J.J., Vespignani, A.: Multiscale mobility networks and the spatial spreading of infectious diseases. Proc. Nat. Acad. Sci. U. S. A. 106, 21484 (2009)

    Article  ADS  Google Scholar 

  21. Tizzoni, M., Bajardi, P., Poletto, C., Ramasco, J.J., Balcan, D., Gonçalves, B., Perra, N., Colizza, V., Vespignani, A.: Real-time numerical forecast of global epidemic spreading: case study of 2009 A/H1N1pdm. BMC Med. 10, 165 (2012)

    Article  Google Scholar 

  22. Poletto, C., Tizzoni, M., Colizza, V.: Human mobility and time spent at destination: impact on spatial epidemic spreading. J. Theor. Bio. 338, 41–58 (2013)

    Article  MathSciNet  Google Scholar 

  23. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  26. Barthélemy, M.: Spatial networks. Phys. Rep. 499, 1–101 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  27. Zaltz Austwick, M., O’Brien, O., Strano, E., Viana, M.: The structure of spatial networks and communities in bicycle sharing systems. PLoS ONE 8, e74685 (2013)

    Article  ADS  Google Scholar 

  28. De Domenico, M., Solé-Ribalta, A., Cozzo, E., Kivelä, M., Moreno, Y., Porter, M.A., Arenas, A.: Mathematical formulation of multilayer networks. Phys. Rev. X 3, 041022 (2013)

    Google Scholar 

  29. Boccaletti, S., Bianconi, G., Criado, R., Del Genio, C.I., Gómez-Gardeñes, J., Romance, M., Sendiña-Nadal, I., Wang, Z., Zanin, M.: The structure and dynamics of multilayer networks. Phys. Rep. 544(1), 1–122 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  30. Kivelä, M., Arenas, A., Barthélemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.: Multilayer networks. J. Complex Netw. 2(3), 203–271 (2014)

    Article  Google Scholar 

  31. De Domenico, M., Solé-Ribalta, A., Gómez, S., Arenas, A.: Navigability of interconnected networks under random failures. Proc. Nat. Acad. Sci. U. S. A. 111(23), 8351–8356 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  32. Kurant, M., Thiran, P.: Layered complex networks. Phys. Rev. Lett. 96, 138701 (2006)

    Article  ADS  Google Scholar 

  33. Cardillo, A., Zanin, M., Gómez-Gardeñes, J., Romance, M., García del Amo, A.J., Boccaletti, S.: Modeling the multi-layer nature of the European air transport network: resilience and passengers re-scheduling under random failures. Eur. Phys. J. Spec. Top. 215, 23–33 (2013)

    Google Scholar 

  34. Cardillo, A., Gómez-Gardeñes, J., Zanin, M., Romance, M., Papo, D., Del Pozo, F., Boccaletti, S.: Emergence of network features from multiplexity. Sci. Rep. 3, 1344 (2013)

    Article  ADS  Google Scholar 

  35. Secretaria Distrital de Movilidad: Informe de indicadores Encuesta de Movilidad de Bogotá 2011. Bogotá: Unión Temporal Steer Davies & Gleave Limited – Centro Nacional de Consultoría (2011). Retrieved from http://www.movilidadbogota.gov.co/?pag=1246

  36. AREA Metropolitana del Valle de Aburrá: Capítulo 2: Diagnóstico. Formulación del Plan Maestro de Movilidad para la Región Metropolitana del Valle de Aburrá. Informe Final, pp. 21–72 (2006). Retrieved from: http://www.areadigital.gov.co/Movilidad/Documents/Plan%20Maestro%20de%20Movilidad.pdf

  37. Barigozzi, M., Fagiolo, G., Garlaschelli, D.: Multinetwork of international trade: a commodity-specific analysis. Phys. Rev. E 81, 046104 (2010)

    Article  ADS  Google Scholar 

  38. Bianconi, G.: Statistical mechanics of multiplex networks: entropy and overlap. Phys. Rev. E 87, 062806 (2013)

    Article  ADS  Google Scholar 

  39. Kapferer, B.: Norms and the manipulation of relationships in a work context. In: Mitchell, J.C. (ed.) Social Networks in Urban Situations: Analyses of Personal Relationships in Central African Towns. Manchester University Press, Manchester (1969)

    Google Scholar 

  40. Parshani, R., Rozenblat, C., Ietri, D., Ducruet, C., Havlin, S.: Inter-similarity between coupled networks. Europhys. Lett. 92, 68002 (2010)

    Article  ADS  Google Scholar 

  41. Battiston, F., Nicosia, V., Latora, V.: Structural measures for multiplex networks. Phys. Rev. E 89, 032804 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the European Commission through FET IP projects MULTIPLEX (Grant No. 317532) and PLEXMATH (Grant No. 317614), from the Spanish MINECO under projects FIS2011-25167 and FIS2012-38266-C02-01, from the Departamento de Industria e Innovación del Gobierno de Aragón and Fondo Social Europeo (Grupo FENOL), and from the Universidad Nacional de Colombia under grants HERMES 19010 and HERMES 16007. JGG is supported by the Spanish MINECO through the Ramón y Cajal program. AC acknowledge the financial support of SNSF through the project CRSII2_147609. We thank Area Metropolitana del Valle de Aburrá, in Medellín, and Secretaría Distrital de Movilidad, in Bogotá, for the Origin-Destination Surveys Datasets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Gómez-Gardeñes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lotero, L., Cardillo, A., Hurtado, R., Gómez-Gardeñes, J. (2016). Several Multiplexes in the Same City: The Role of Socioeconomic Differences in Urban Mobility. In: Garas, A. (eds) Interconnected Networks. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-23947-7_9

Download citation

Publish with us

Policies and ethics