Skip to main content

Visualizing Cortical Tissue Optical Changes During Seizure Activity with Optical Coherence Tomography

  • Chapter
  • First Online:
Video Bioinformatics

Part of the book series: Computational Biology ((COBO,volume 22))

  • 1360 Accesses

Abstract

Optical coherence tomography (OCT) is a label-free, high resolution, minimally invasive imaging tool, which can produce millimeter depth-resolved cross-sectional images. We identified changes in the backscattered intensity of infrared light, which occurred during the development of induced seizures in vivo in mice. In a large region of interest, we observed significant decreases in the OCT intensity from cerebral cortex tissue preceding and during generalized tonic-clonic seizures induced with pentylenetetrazol (PTZ). We then leveraged the full spatiotemporal resolution of OCT by studying the temporal evolution of localized changes in backscattered intensity in three dimensions and analyzed the seizure propagation in time-resolved 3D functional images. This allowed for a better understanding and visualization of this biological phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Matthews PM et al. (2006) Applications of fMRI in translational medicine and clinical practice. Rev Neuroimage 7:732

    Google Scholar 

  2. Catana C et al. (2012) PET/MRI for Neurologic Applications. J Nucl Med 53(12):1916

    Google Scholar 

  3. Hedrick WR, Hykes DL, Starchman DE (2005) Ultrasound physics and instrumentation, 4th edn. Elsevier, Mosby

    Google Scholar 

  4. Conchello JA, Lichtman JW (2005) Optical sectioning microscopy. Nat Methods 2:920

    Google Scholar 

  5. Townsend DW (2006) In: Valk PE et al (eds) Positron emission tomography. Springer, New York, pp 1–16

    Google Scholar 

  6. Looger LL, Griesbeck O (2012) Genetically encoded neural activity indicators. Curr Op Neurobiol 22:18

    Google Scholar 

  7. Deisseroth K (2011) Optogenetics. Nat Methods 8:26

    Google Scholar 

  8. Schmitt JM (1999) Optical coherence tomography (OCT): a review. IEEE J Sel Top Quant Electron 5(4):1205

    Google Scholar 

  9. Huang D et al. (1991) Optical coherence tomography. Science 254:1178

    Google Scholar 

  10. Izatt JA et al. (1996) Optical coherence tomography and microscopy in gastrointestinal tissues. IEEE J Sel Top Quant Electron 2(4):1017

    Google Scholar 

  11. Fujimoto J (2008) In: Drexler W, Fujimoto J (eds) Optical coherence tomography technology and applications. Springer, New York, pp 1–45

    Google Scholar 

  12. Rollins AM et al. (1998) In vivo video rate optical coherence tomography. Opt Exp 3(6):219

    Google Scholar 

  13. de Boer JF et al. (2003) Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt Lett 28, 2067

    Google Scholar 

  14. Yun SH et al. (2003) High-speed spectral domain optical coherence tomography at 1.3 µm wavelength. Opt Exp 11:3598

    Google Scholar 

  15. Choma MA et al. (2003) Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt Exp 11:2183

    Google Scholar 

  16. Leitgeb RA et al. (2004) Ultra high resolution Fourier domain optical coherence tomography. Opt Exp 12(11):2156

    Google Scholar 

  17. Bizheva K et al. (2004) Imaging in vitro brain morphology in animal models using ultrahigh resolution optical coherence tomography. J B O 9, 719

    Google Scholar 

  18. Wang Y et al. (2012) GPU accelerated real-time multi-functional spectral-domain optical coherence tomography system at 1300nm. Opt Exp 20:14797

    Google Scholar 

  19. Wojtkowski M et al. (2002) In vivo human retinal imaging by Fourier domain optical coherence tomography. J Biomed Opt 7(3):457

    Google Scholar 

  20. de Boer JF (2008) In: Drexler W, Fujimoto J (eds) Optical coherence tomography technology and applications. Springer, New York, pp 147–175

    Google Scholar 

  21. Mujat M et al. (2007) Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination. J B O 12(4):041205

    Google Scholar 

  22. Yun SH et al. (2003) High-speed spectral domain optical coherence tomography at 1.3 µm wavelength. Opt Exp 11:3598

    Google Scholar 

  23. Weber J R et al (2010) Conf Biomed Opt (CD), BSuD110p, (OSA)

    Google Scholar 

  24. Binder DK et al. (2004) In vivo measurement of brain extracellular space diffusion by cortical surface photobleaching J Neurosci :8049

    Google Scholar 

  25. Rajneesh KF et al. (2010) Optical detection of the pre-seizure state in-vivo. J Neuosurg Abs 113:A422

    Google Scholar 

  26. Holthoff K et al. (1998) Intrinsic optical signals in vitro: a tool to measure alterations in extracellular space with two-dimensional resolution. Brain Res Bull 47(6):649

    Google Scholar 

  27. Jacqueline A et al. (2013) Glial cell changes in epilepsy: Overview of the clinical problem and therapeutic opportunities. Neurochem Intern 63(7):638

    Google Scholar 

  28. Satomura Y et al. (2004) In vivo imaging of the rat cerebral microvessels with optical coherence tomography. Clin Hem Micro 31:31

    Google Scholar 

  29. Aguirre AD et al. (2006) Depth-resolved imaging of functional activation in the rat cerebral cortex. Opt Lett 31:3459

    Google Scholar 

  30. Chen Y et al. (2009) Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation. J Neurosci Methods 178:162

    Google Scholar 

  31. Rajagopalan UM, Tanifuji M (2007) Functional optical coherence tomography reveals localized layer-specific activations in cat primary visual cortex in vivo. Opt Lett 32:2614–2616

    Google Scholar 

  32. Tsytsarev V et al. (2013) Photoacoustic and optical coherence tomography of epilepsy with high temporal and spatial resolution and dual optical contrasts. J Neuro Meth 216:142

    Google Scholar 

  33. . Eberle MM et al. (2012) In vivo detection of cortical optical changes associated with seizure activity with optical coherence tomography. Bio Opt Exp 3(11):2700

    Google Scholar 

  34. Szu JI et al. (2012) Thinned-skull Cortical Window Technique for In Vivo Optical Coherence Tomography Imaging. J V Exp 69, e50053. doi:10.3791/50053

  35. White BR et al. (2003) In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography. Opt Exp 11(25):3490

    Google Scholar 

Download references

Acknowledgments

This research was sponsored at UC Riverside by the National Institutes of Health R00-EB007241, K08-NS059674, and R01-NS081243; the National Science Foundation IGERT Video Bioinformatics DGE 0903667; and the UC Discovery Grant #213073.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Eberle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Eberle, M.M. et al. (2015). Visualizing Cortical Tissue Optical Changes During Seizure Activity with Optical Coherence Tomography. In: Bhanu, B., Talbot, P. (eds) Video Bioinformatics. Computational Biology, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-23724-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23724-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23723-7

  • Online ISBN: 978-3-319-23724-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics