Skip to main content

Direct Multiple Shooting for Nonlinear Optimum Experimental Design

  • Conference paper

Part of the book series: Contributions in Mathematical and Computational Sciences ((CMCS,volume 9))

Abstract

Optimum experimental design (OED) for parameter identification has become a key technique in the model validation process for dynamical systems. This paper deals with optimum experimental design for systems modelled by differential-algebraic equations. We show how to formulate OED as a nonstandard nonlinear optimal control problem. The direct multiple shooting method is a state of the art method for the solution of standard optimal control problems that leads to structured nonlinear programs. We present two possibilities how to adapt direct multiple shooting to OED by introducing additional variables and constraints. We highlight special structures in the constraint and objective derivatives whose evaluation is usually the bottleneck when solving dynamic optimization problems by multiple shooting. We have implemented a structure exploiting algorithm that takes all these structures into account. Two benchmark examples show the efficiency of the new algorithm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Albersmeyer, J.: Adjoint based algorithms and numerical methods for sensitivity generation and optimization of large scale dynamic systems. Ph.D. thesis, Ruprecht-Karls-Universität Heidelberg (2010)

    Google Scholar 

  2. Atkinson, A.C., Donev, A.: Optimum Experimental Designs. Oxford Statistical Sciences Series, vol. 8. Oxford University Press, Oxford (1992)

    Google Scholar 

  3. Bauer, I., Bock, H.G., Schlöder J.P.: DAESOL – a BDF-code for the numerical solution of differential algebraic equations. Internal Report, IWR, SFB 359, Universität Heidelberg (1999)

    Google Scholar 

  4. Bauer, I., Bock, H.G., Körkel, S., Schlöder, J.P.: Numerical methods for optimum experimental design in DAE systems. J. Comput. Appl. Math. 120(1–2), 1–15 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bock, H.G.: Numerical treatment of inverse problems in chemical reaction kinetics. In: Ebert, K.H., Deuflhard, P., Jäger, W. (eds.) Modelling of Chemical Reaction Systems. Springer Series in Chemical Physics, vol. 18, pp. 102–125. Springer, Heidelberg (1981)

    Chapter  Google Scholar 

  6. Bock, H.G.: Randwertproblemmethoden zur parameteridentifizierung in systemen nichtlinearer differentialgleichungen. Bonner Mathematische Schriften, vol. 183. Universität Bonn, Bonn (1987)

    Google Scholar 

  7. Bock, H.G., Plitt, K.J.: A Multiple Shooting algorithm for direct solution of optimal control problems. In: Proceedings of the 9th IFAC World Congress, pp. 242–247. Pergamon Press, Budapest (1984). Available at http://www.iwr.uni-heidelberg.de/groups/agbock/FILES/Bock1984.pdf

  8. Bock, H.G. Eich, E., Schlöder. J.P.: Numerical solution of constrained least squares boundary value problems in differential-algebraic equations. In: Strehmel, K. (ed.) Numerical Treatment of Differential Equations. Proceedings of the NUMDIFF-4 Conference, Halle-Wittenberg, 1987. Texte zur Mathematik, vol. 104, pp. 269–280. Teubner, Leipzig (1988)

    Google Scholar 

  9. Contreras, M., Tapia, R.A.: Sizing the BFGS and DFP updates: numerical study. J. Optim. Theory Appl. 78(1), 93–108 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fedorov, V.V.: Theory of Optimal Experiments. Elsevier, Amsterdam (1972)

    Google Scholar 

  11. Ferreau, H.J., Kirches, C., Potschka, A., Bock, H.G., Diehl, M.: qpOASES: A parametric active-set algorithm for quadratic programming. Math. Program. Comput. 6(4), 327–363 (2014)

    Google Scholar 

  12. Franceschini, G., Macchietto, S.: Model-based design of experiments for parameter precision: state of the art. Chem. Eng. Sci. 63, 4846–4872 (2008)

    Article  Google Scholar 

  13. Hoang, M.D., Barz, T., Merchan, V.A., Biegler, L.T., Arellano-Garcia, H.: Simultaneous solution approach to model-based experimental design. AIChE J. 59(11), 4169–4183 (2013)

    Article  Google Scholar 

  14. Janka, D.: Optimum experimental design and multiple shooting. Master’s thesis, Universität Heidelberg, Heidelberg (2010)

    Google Scholar 

  15. Körkel, S.: Numerische methoden für optimale versuchsplanungsprobleme bei nichtlinearen DAE-modellen. Ph.D. thesis, Universität Heidelberg, Heidelberg (2002)

    Google Scholar 

  16. Körkel, S., Potschka, A., Bock, H.G., Sager, S.: A multiple shooting formulation for optimum experimental design. Math. Program. (2012, submitted revisions)

    Google Scholar 

  17. Potschka, A., Bock, H.G., Schlöder, J.P.: A minima tracking variant of semi-infinite programming for the treatment of path constraints within direct solution of optimal control problems. Optim. Methods Softw. 24(2), 237–252 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pukelsheim, F.: Optimal design of experiments. In: Classics in Applied Mathematics, vol. 50. SIAM, Philadelphia (2006). ISBN:978-0-898716-04-7.

    Google Scholar 

  19. Sager, S.: MIOCP benchmark site. (2014) http://mintoc.de

  20. Sager, S.: Sampling decisions in optimum experimental design in the light of Pontryagin’s maximum principle. SIAM J. Control. Optim. 51(4), 3181–3207 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wächter, A., Biegler, L.T.: Line search filter methods for nonlinear programming: motivation and global convergence. SIAM J. Optim. 16(1), 1–31 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis Janka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Janka, D., Körkel, S., Bock, H.G. (2015). Direct Multiple Shooting for Nonlinear Optimum Experimental Design. In: Carraro, T., Geiger, M., Körkel, S., Rannacher, R. (eds) Multiple Shooting and Time Domain Decomposition Methods. Contributions in Mathematical and Computational Sciences, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-23321-5_4

Download citation

Publish with us

Policies and ethics