Skip to main content

Evolving Efficient Solutions to Complex Problems Using the Artificial Epigenetic Network

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9303))

Abstract

The artificial epigenetic network (AEN) is a computational model which is able to topologically modify its structure according to environmental stimulus. This approach is inspired by the functionality of epigenetics in nature, specifically, processes such as chromatin modifications which are able to dynamically modify the topology of gene regulatory networks. The AEN has previously been shown to perform well when applied to tasks which require a range of dynamical behaviors to be solved optimally. In addition, it has been shown that pruning of the AEN to remove non-functional elements can result in highly compact solutions to complex dynamical tasks. In this work, a method has been developed which provides the AEN with the ability to self prune throughout the optimisation process, whilst maintaining functionality. To test this hypothesis, the AEN is applied to a range of dynamical tasks and the most optimal solutions are analysed in terms of function and structure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bird, A.: Perceptions of epigenetics. Nature 447(7143), 396–398 (2007)

    Article  Google Scholar 

  2. Bull, L.: Consideration of mobile DNA: new forms of artificial genetic regulatory networks. Nat. Comput. 12(4), 443–452 (2013)

    Article  MathSciNet  Google Scholar 

  3. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  5. Hamann, H., Schmickl, T., Crailsheim, K.: Coupled inverted pendulums: a benchmark for evolving decentral controllers in modular robotics. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 195–202. ACM (2011)

    Google Scholar 

  6. Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T.N., et al.: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Sig. Process. Mag. 29(6), 82–97 (2012)

    Article  Google Scholar 

  7. Huang, S.: Reprogramming cell fates: reconciling rarity with robustness. Bioessays 31(5), 546–560 (2009)

    Article  Google Scholar 

  8. Lones, M.A., Turner, A.P., Fuente, L.A., Stepney, S., Caves, L.S.D., Tyrrell, A.M.: Biochemical connectionism. Nat. Comput. 12(4), 453–472 (2013)

    Article  MathSciNet  Google Scholar 

  9. Lones, M.A., Tyrrell, A.M., Stepney, S., Caves, L.S.: Controlling complex dynamics with artificial biochemical networks. In: Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Uyar, A.Ş. (eds.) EuroGP 2010. LNCS, vol. 6021, pp. 159–170. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Masel, J., Trotter, M.V.: Robustness and evolvability. Trends Genet. 26(9), 406–414 (2010)

    Article  Google Scholar 

  11. Moran, L.A., Horton, H.R., Scrimgeour, G., Perry, M.: Principles of Biochemistry. Pearson, Boston (2012)

    Google Scholar 

  12. Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Learning and transferring mid-level image representations using convolutional neural networks. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1717–1724. IEEE (2014)

    Google Scholar 

  13. Reid, C.R., Sumpter, D.J., Beekman, M.: Optimisation in a natural system: Argentine ants solve the Towers of Hanoi. J. Exp. Biol. 214(1), 50–58 (2011)

    Article  Google Scholar 

  14. Reil, T.: Dynamics of gene expression in an artificial genome - implications for biological and artificial ontogeny. In: Floreano, D., Mondada, F. (eds.) ECAL 1999. LNCS, vol. 1674, pp. 457–466. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  15. Turner, A.P.: The Artificial Epigenetic Network. Ph.D. thesis, University of York (2013)

    Google Scholar 

  16. Turner, A.P., Lones, M.A., Fuente, L.A., Stepney, S., Caves, L.S.D., Tyrrell, A.M.: The artificial epigenetic network. In: 10th Internation Conference on Evolvable Systems, Singapore, pp. 66–72. IEEE Press, April 2013

    Google Scholar 

  17. Turner, A.P., Lones, M.A., Fuente, L.A., Tyrrell, A.M., Stepney, S., Caves, L.S.D.: Controlling complex tasks using artificial epigenetic regulatory networks. BioSystems 112(2), 56–62 (2013)

    Article  Google Scholar 

  18. Wang, R.S., Saadatpour, A., Albert, R.: Boolean modeling in systems biology: an overview of methodology and applications. Phys. Biol. 9(5), 055001 (2012)

    Article  Google Scholar 

  19. Yang, X.S., Cui, Z., Xiao, R., Gandomi, A.H., Karamanoglu, M.: Swarm intelligence and bio-inspired computation: theory and applications. Newnes (2013)

    Google Scholar 

  20. Zhou, A., Qu, B.Y., Li, H., Zhao, S.Z., Suganthan, P.N., Zhang, Q.: Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evol. Comput. 1(1), 32–49 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the EPSRC for their support of this work through the Platform Grant EP/K040820/1. Data created during this research is available at the following DOI: 10.15124/3f245e80- c306-4ada-8920-a0282e4962b3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander P. Turner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Turner, A.P., Trefzer, M.A., Lones, M.A., Tyrrell, A.M. (2015). Evolving Efficient Solutions to Complex Problems Using the Artificial Epigenetic Network. In: Lones, M., Tyrrell, A., Smith, S., Fogel, G. (eds) Information Processing in Cells and Tissues. IPCAT 2015. Lecture Notes in Computer Science(), vol 9303. Springer, Cham. https://doi.org/10.1007/978-3-319-23108-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23108-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23107-5

  • Online ISBN: 978-3-319-23108-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics