Skip to main content

A Discrete Krill Herd Method with Multilayer Coding Strategy for Flexible Job-Shop Scheduling Problem

  • Conference paper
  • First Online:
Book cover Intelligent Systems Technologies and Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 384))

Abstract

Krill herd (KH) algorithm is a novel swarm-based approach which mimics the herding and foraging behavior of krill species in sea. In our current work, KH method is discretized and incorporated into some heuristic strategies so as to form an effective approach, called discrete krill herd (DKH). The intention has been to use DKH towards solving the flexible job-shop scheduling problem (FJSSP). Firstly, instead of continuous code, a multilayer coding strategy is used in preprocessing stage which enables the KH method to deal with FJSSP. Subsequently, the proposed DKH method is applied to find the best scheduling sequence within the promising domain. In addition, elitism strategy is integrated to DKH with the aim of making the krill swarm move towards the better solutions all the time. The performance of the proposed discrete krill herd algorithm is verified by two FJSSP instances, and the results clearly demonstrate that our approach is able to find the better scheduling in most cases than some existing state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hu, Y., Yin, M., Li, X.: A novel objective function for job-shop scheduling problem with fuzzy processing time and fuzzy due date using differential evolution algorithm. Int. J. Adv. Manuf. Tech. 56(9), 1125–1138 (2011). doi:10.1007/s00170-011-3244-3

    Article  Google Scholar 

  2. Lin, J.: A hybrid biogeography-based optimization for the fuzzy flexible job shop scheduling problem. Knowl.-Based Syst. (2015). doi:10.1016/j.knosys.2015.01.017

    Google Scholar 

  3. Li, X., Yin, M.: An opposition-based differential evolution algorithm for permutation flow shop scheduling based on diversity measure. Adv. Eng. Softw. 55, 10–31 (2013). doi:10.1016/j.advengsoft.2012.09.003

    Article  Google Scholar 

  4. Xu, Y., Wang, L., S-y, W., Liu, M.: An effective teaching–learning-based optimization algorithm for the flexible job-shop scheduling problem with fuzzy processing time. Neurocomputing 148, 260–268 (2015). doi:10.1016/j.neucom.2013.10.042

    Article  Google Scholar 

  5. Wang, S., Wang, L., Xu, Y., Liu, M.: An effective estimation of distribution algorithm for the flexible job-shop scheduling problem with fuzzy processing time. Int. J. Prod. Res. 51(12), 3778–3793 (2013). doi:10.1080/00207543.2013.765077

    Article  Google Scholar 

  6. Wang, L., Zhou, G., Xu, Y., Liu, M.: A hybrid artificial bee colony algorithm for the fuzzy flexible job-shop scheduling problem. Int. J. Prod. Res. 51(12), 3593–3608 (2013). doi:10.1080/00207543.2012.754549

    Article  Google Scholar 

  7. Caniyilmaz, E., Benli, B., Ilkay, M.S.: An artificial bee colony algorithm approach for unrelated parallel machine scheduling with processing set restrictions, job sequence-dependent setup times, and due date. Int. J. Adv. Manuf. Tech. 77(9–12), 2105–2115 (2014). doi:10.1007/s00170-014-6614-9

    Google Scholar 

  8. J-q, L., Y-x, P.: A hybrid discrete particle swarm optimization algorithm for solving fuzzy job shop scheduling problem. Int. J. Adv. Manuf. Tech. 66(1–4), 583–596 (2012). doi:10.1007/s00170-012-4337-3

    Google Scholar 

  9. Lei, D.: Pareto archive particle swarm optimization for multi-objective fuzzy job shop scheduling problems. Int. J. Adv. Manuf. Tech. 37(1–2), 157–165 (2007). doi:10.1007/s00170-007-0945-8

    Google Scholar 

  10. Chen, C.-L., Huang, S.-Y., Tzeng, Y.-R., Chen, C.-L.: A revised discrete particle swarm optimization algorithm for permutation flow-shop scheduling problem. Soft. Comput. 18(11), 2271–2282 (2013). doi:10.1007/s00500-013-1199-z

    Article  Google Scholar 

  11. Fang, C., Wang, L.: An effective shuffled frog-leaping algorithm for resource-constrained project scheduling problem. Comput. Oper. Res. 39(5), 890–901 (2012). doi:10.1016/j.cor.2011.07.010

    Article  MathSciNet  MATH  Google Scholar 

  12. Kennedy, J., Eberhart, R.: Particle swarm optimization. Paper presented at the Proceeding of the IEEE International Conference on Neural Networks, Perth, Australia, November 27–December 1, 1995

    Google Scholar 

  13. Zhao, X., Liu, Z., Yang, X.: A multi-swarm cooperative multistage perturbation guiding particle swarm optimizer. Appl. Soft. Compt. 22, 77–93 (2014). doi:10.1016/j.asoc.2014.04.042

    Article  Google Scholar 

  14. Mirjalili, S., Lewis, A.: S-shaped versus V-shaped transfer functions for binary Particle Swarm Optimization. Swarm. Evol. Comput. 9, 1–14 (2013). doi:10.1016/j.swevo.2012.09.002

    Article  Google Scholar 

  15. Wang, G.-G., Gandomi, A.H., Yang, X.-S., Alavi, A.H.: A novel improved accelerated particle swarm optimization algorithm for global numerical optimization. Eng. Computation 31(7), 1198–1220 (2014). doi:10.1108/EC-10-2012-0232

    Article  Google Scholar 

  16. Mirjalili, S.: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. (2015). doi:10.1007/s00521-015-1920-1

    Google Scholar 

  17. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. B Cybern. 26(1), 29–41 (1996). doi:10.1109/3477.484436

    Article  Google Scholar 

  18. Zhang, Z., Feng, Z.: Two-stage updating pheromone for invariant ant colony optimization algorithm. Expert Syst. Appl. 39(1), 706–712 (2012). doi:10.1016/j.eswa.2011.07.062

    Article  Google Scholar 

  19. Zhang, Z., Zhang, N., Feng, Z.: Multi-satellite control resource scheduling based on ant colony optimization. Expert Syst. Appl. 41(6), 2816–2823 (2014). doi:10.1016/j.eswa.2013.10.014

    Article  Google Scholar 

  20. Gandomi, A.H., Yang, X.-S., Alavi, A.H., Talatahari, S.: Bat algorithm for constrained optimization tasks. Neural Comput. Appl. 22(6), 1239–1255 (2013). doi:10.1007/s00521-012-1028-9

    Article  Google Scholar 

  21. Yang, X.S., Gandomi, A.H.: Bat algorithm: a novel approach for global engineering optimization. Eng. Computation 29(5), 464–483 (2012). doi:10.1108/02644401211235834

    Article  Google Scholar 

  22. Yang, X.-S.: A new metaheuristic bat-inspired algorithm. In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds.) NICSO 2010. SCI, vol. 284, pp. 65–74. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  23. Mirjalili, S., Mirjalili, S.M., Yang, X.-S.: Binary bat algorithm. Neural Comput. Appl. 25(3–4), 663–681 (2013). doi:10.1007/s00521-013-1525-5

    Google Scholar 

  24. Yang, X.S.: Nature-inspired metaheuristic algorithms, 2nd edn. Luniver Press, Frome (2010)

    Google Scholar 

  25. Wang, G.-G., Deb, S., Cui, Z.: Monarch butterfly optimization. Neural Comput. Appl. (2015). doi:10.1007/s00521-015-1923-y

    Google Scholar 

  26. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997). doi:10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  27. Gandomi, A.H., Yang, X.-S., Talatahari, S., Deb, S.: Coupled eagle strategy and differential evolution for unconstrained and constrained global optimization. Comput. Math Appl. 63(1), 191–200 (2012). doi:10.1016/j.camwa.2011.11.010

    Article  MathSciNet  MATH  Google Scholar 

  28. Zou, D., Wu, J., Gao, L., Li, S.: A modified differential evolution algorithm for unconstrained optimization problems. Neurocomputing 120, 469–481 (2013). doi:10.1016/j.neucom.2013.04.036

    Article  Google Scholar 

  29. Wang, G.-G., Gandomi, A.H., Alavi, A.H., Hao, G.-S.: Hybrid krill herd algorithm with differential evolution for global numerical optimization. Neural Comput. Appl. 25(2), 297–308 (2014). doi:10.1007/s00521-013-1485-9

    Article  Google Scholar 

  30. Gandomi, A.H., Yang, X.-S., Alavi, A.H.: Mixed variable structural optimization using firefly algorithm. Comput. Struct. 89(23–24), 2325–2336 (2011). doi:10.1016/j.compstruc.2011.08.002

    Article  Google Scholar 

  31. Yang, X.S.: Firefly algorithm, stochastic test functions and design optimisation. Int. J. of Bio-Inspired Computation 2(2), 78–84 (2010). doi:10.1504/IJBIC.2010.032124

    Article  Google Scholar 

  32. Wang, G.-G., Guo, L., Duan, H., Wang, H.: A new improved firefly algorithm for global numerical optimization. J. Comput. Theor. Nanos. 11(2), 477–485 (2014). doi:10.1166/jctn.2014.3383

    Article  Google Scholar 

  33. Simon, D.: Biogeography-based optimization. IEEE Trans. Evolut. Comput. 12(6), 702–713 (2008). doi:10.1109/TEVC.2008.919004

    Article  Google Scholar 

  34. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Let a biogeography-based optimizer train your Multi-Layer Perceptron. Inf. Sci. 269, 188–209 (2014). doi:10.1016/j.ins.2014.01.038

    Article  MathSciNet  Google Scholar 

  35. Li, X., Yin, M.: Multi-operator based biogeography based optimization with mutation for global numerical optimization. Comput. Math Appl. 64(9), 2833–2844 (2012). doi:10.1016/j.camwa.2012.04.015

    Article  MathSciNet  MATH  Google Scholar 

  36. Li, X., Yin, M.: Multiobjective binary biogeography based optimization for feature selection using gene expression data. IEEE Trans. Nanobiosci. 12(4), 343–353 (2013). doi:10.1109/TNB.2013.2294716

    Article  Google Scholar 

  37. Lin, J.: Parameter estimation for time-delay chaotic systems by hybrid biogeography-based optimization. Nonlinear Dynam. 77(3), 983–992 (2014). doi:10.1007/s11071-014-1356-7

    Article  Google Scholar 

  38. Lin, J., Xu, L., Zhang, H.: Hybrid biogeography based optimization for constrained optimal spot color matching. Color Research & Application 39(6), 607–615 (2014). doi:10.1002/col.21836

    Article  Google Scholar 

  39. Wang, G., Guo, L., Duan, H., Liu, L., Wang, H., Shao, M.: Path Planning for Uninhabited Combat Aerial Vehicle Using Hybrid Meta-Heuristic DE/BBO Algorithm. Adv. Sci. Eng. Med. 4(6), 550–564 (2012). doi:10.1166/asem.2012.1223

    Article  Google Scholar 

  40. Fong, S., Deb, S., Yang, X.-S.: A heuristic optimization method inspired by wolf preying behavior. Neural Comput. Appl. (2015). doi:10.1007/s00521-015-1836-9

    Google Scholar 

  41. Yang, X.S., Deb, S.: Cuckoo search via Lévy flights. In: Abraham, A., Carvalho, A., Herrera, F., Pai, V. (eds.) Proceeding of World Congress on Nature & Biologically Inspired Computing (NaBIC 2009), pp. 210–214. IEEE Publications, USA (2009)

    Chapter  Google Scholar 

  42. Li, X., Wang, J., Yin, M.: Enhancing the performance of cuckoo search algorithm using orthogonal learning method. Neural Comput. Appl. 24(6), 1233–1247 (2013). doi:10.1007/s00521-013-1354-6

    Article  MathSciNet  Google Scholar 

  43. Li, X., Yin, M.: Modified cuckoo search algorithm with self adaptive parameter method. Inf. Sci. 298, 80–97 (2015). doi:10.1016/j.ins.2014.11.042

    Article  MathSciNet  Google Scholar 

  44. Wang, G.-G., Gandomi, A.H., Zhao, X., Chu, H.E.: Hybridizing harmony search algorithm with cuckoo search for global numerical optimization. Soft. Comput. (2014). doi:10.1007/s00500-014-1502-7

    Google Scholar 

  45. Li, X., Yin, M.: A particle swarm inspired cuckoo search algorithm for real parameter optimization. Soft. Comput. (2015). doi:10.1007/s00500-015-1594-8

    Google Scholar 

  46. Wang, G.-G., Deb, S., Gandomi, A.H., Zhang, Z., Alavi, A.H.: Chaotic cuckoo search. Soft. Comput. (2015). doi:10.1007/s00500-015-1726-1

    Google Scholar 

  47. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39(3), 459–471 (2007). doi:10.1007/s10898-007-9149-x

    Article  MathSciNet  MATH  Google Scholar 

  48. Li, X., Yin, M.: Parameter estimation for chaotic systems by hybrid differential evolution algorithm and artificial bee colony algorithm. Nonlinear Dynam. 77(1–2), 61–71 (2014). doi:10.1007/s11071-014-1273-9

    Article  MathSciNet  Google Scholar 

  49. Li, X., Yin, M.: Self-adaptive constrained artificial bee colony for constrained numerical optimization. Neural Comput. Appl. 24(3–4), 723–734 (2012). doi:10.1007/s00521-012-1285-7

    Google Scholar 

  50. Mirjalili, S.: The ant lion optimizer. Adv. Eng. Softw. 83, 80–98 (2015). doi:10.1016/j.advengsoft.2015.01.010

    Article  Google Scholar 

  51. Mirjalili, S., Mirjalili, S.M., Hatamlou, A.: Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput. Appl. (2015). doi:10.1007/s00521-015-1870-7

    Google Scholar 

  52. Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009). doi:10.1016/j.ins.2009.03.004

    Article  MATH  Google Scholar 

  53. Mirjalili, S., Wang, G.-G., Coelho, L.: Binary optimization using hybrid particle swarm optimization and gravitational search algorithm. Neural Comput. Appl. 25(6), 1423–1435 (2014). doi:10.1007/s00521-014-1629-6

    Article  Google Scholar 

  54. Mirjalili, S., Lewis, A.: Adaptive gbest-guided gravitational search algorithm. Neural Comput. Appl. 25(7–8), 1569–1584 (2014). doi:10.1007/s00521-014-1640-y

    Article  Google Scholar 

  55. Li, X., Zhang, J., Yin, M.: Animal migration optimization: an optimization algorithm inspired by animal migration behavior. Neural Comput. Appl. 24(7–8), 1867–1877 (2014). doi:10.1007/s00521-013-1433-8

    Article  Google Scholar 

  56. Gandomi, A.H.: Interior search algorithm (ISA): a novel approach for global optimization. ISA Trans. 53(4), 1168–1183 (2014). doi:10.1016/j.isatra.2014.03.018

    Article  Google Scholar 

  57. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014). doi:10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  58. Mirjalili, S.: How effective is the Grey Wolf optimizer in training multi-layer perceptrons. Appl. Intell. (2015). doi:10.1007/s10489-014-0645-7

    Google Scholar 

  59. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001). doi:10.1177/003754970107600201

    Article  Google Scholar 

  60. Wang, G., Guo, L., Duan, H., Wang, H., Liu, L., Shao, M.: Hybridizing harmony search with biogeography based optimization for global numerical optimization. J. Comput. Theor. Nanos. 10(10), 2318–2328 (2013). doi:10.1166/jctn.2013.3207

    Google Scholar 

  61. Zou, D., Gao, L., Li, S., Wu, J.: Solving 0-1 knapsack problem by a novel global harmony search algorithm. Appl. Soft. Compt. 11(2), 1556–1564 (2011). doi:10.1016/j.asoc.2010.07.019

    Article  Google Scholar 

  62. Yang, X.-S., Karamanoglu, M., He, X.: Flower pollination algorithm: A novel approach for multiobjective optimization. Eng. Optimiz., 1–16 (2013). doi:10.1080/0305215X.2013.832237

    Google Scholar 

  63. Gandomi, A.H., Alavi, A.H.: Krill herd: a new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simulat. 17(12), 4831–4845 (2012). doi:10.1016/j.cnsns.2012.05.010

    Article  MathSciNet  MATH  Google Scholar 

  64. Wang, G.-G., Gandomi, A.H., Alavi, A.H., Deb, S.: A hybrid method based on krill herd and quantum-behaved particle swarm optimization. Neural Comput. Appl. (2015). doi:10.1007/s00521-015-1914-z

    Google Scholar 

  65. Wang, G.-G., Guo, L., Gandomi, A.H., Hao, G.-S., Wang, H.: Chaotic krill herd algorithm. Inf. Sci. 274, 17–34 (2014). doi:10.1016/j.ins.2014.02.123

    Article  MathSciNet  Google Scholar 

  66. Wang, G.-G., Gandomi, A.H., Alavi, A.H.: A chaotic particle-swarm krill herd algorithm for global numerical optimization. Kybernetes 42(6), 962–978 (2013). doi:10.1108/K-11-2012-0108

    Article  MathSciNet  Google Scholar 

  67. Wang, G.-G., Guo, L., Gandomi, A.H., Alavi, A.H., Duan, H.: Simulated annealing-based krill herd algorithm for global optimization. Abstr. Appl. Anal. 2013, 1–11 (2013). doi:10.1155/2013/213853

    MathSciNet  Google Scholar 

  68. Wang, G.-G., Gandomi, A.H., Yang, X.-S., Alavi, A.H.: A new hybrid method based on krill herd and cuckoo search for global optimization tasks. Int. J. of Bio-Inspired Computation (2014)

    Google Scholar 

  69. Wang, G., Guo, L., Wang, H., Duan, H., Liu, L., Li, J.: Incorporating mutation scheme into krill herd algorithm for global numerical optimization. Neural Comput. Appl. 24(3–4), 853–871 (2014). doi:10.1007/s00521-012-1304-8

    Article  Google Scholar 

  70. Wang, G.-G., Gandomi, A.H., Alavi, A.H.: Stud krill herd algorithm. Neurocomputing 128, 363–370 (2014). doi:10.1016/j.neucom.2013.08.031

    Article  Google Scholar 

  71. Wang, G.-G., Gandomi, A.H., Alavi, A.H.: An effective krill herd algorithm with migration operator in biogeography-based optimization. Appl. Math. Model. 38(9–10), 2454–2462 (2014). doi:10.1016/j.apm.2013.10.052

    Article  MathSciNet  Google Scholar 

  72. Guo, L., Wang, G.-G., Gandomi, A.H., Alavi, A.H., Duan, H.: A new improved krill herd algorithm for global numerical optimization. Neurocomputing 138, 392–402 (2014). doi:10.1016/j.neucom.2014.01.023

    Article  Google Scholar 

  73. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine learning. Addison-Wesley, New York (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gai-Ge Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, GG., Deb, S., Thampi, S.M. (2016). A Discrete Krill Herd Method with Multilayer Coding Strategy for Flexible Job-Shop Scheduling Problem. In: Berretti, S., Thampi, S., Srivastava, P. (eds) Intelligent Systems Technologies and Applications. Advances in Intelligent Systems and Computing, vol 384. Springer, Cham. https://doi.org/10.1007/978-3-319-23036-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23036-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23035-1

  • Online ISBN: 978-3-319-23036-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics