Skip to main content

One-Dimensional Model of Water Quality and Aquatic Ecosystem/Ecotoxicology in River Systems

  • Chapter

Part of the book series: Handbook of Environmental Engineering ((HEE,volume 16))

Abstract

A one-dimensional water quality and aquatic ecology/ecotoxicology model has been incorporated into a package for the modeling of hydrodynamic, sediment transport, contaminant transport, water quality, aquatic ecosystem, and ecotoxicology in river systems. The water quality model alone can be used to determine water temperature, dissolved oxygen, biological oxygen demand, nitrogen, phosphorus, and conservative chemical such as chloride. The aquatic ecosystem model considers a basic food web structure consisting of four trophic levels: phytoplankton, zooplankton, forage fish, and predatory fish, undergoing various biological processes such as photosynthesis, grazing, respiration, excretion, defecation, mortality, gamete, and reproduction. The model simulates the bioaccumulation of toxic chemicals in organisms by uptake, depuration and dietary, and takes into account the effects of toxicity on organisms through modification factors of photosynthesis, grazing, and gamete mortality. The modeling package has been tested by simulating the water quality parameters in the Tualatin River, Oregon and the water quality, aquatic ecosystem, polychlorinated biphenyl (PCB) transport and bioaccumulation in the Upper Hudson River, New York. The simulated water quality parameters, phytoplankton and zooplankton biomass, fish populations, and PCB concentrations in fish are in generally good agreement with the measurement data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

[H]+ :

Molar concentration of hydrogen ion, mol/m3

[OH] :

Molar concentration of hydroxide ion, mol/m3

A:

Cross-sectional flow area, m2

Ca :

Biomass concentration of phytoplankton, g/m3, or μg/L

cb :

Bowen coefficient

CCBOD :

Concentration of carbonaceous biological oxygen demand (CBOD), g/m3

CDO :

Dissolved oxygen (DO) concentration, g/m3

C′DO :

Saturation DO concentration, g/m3

Cg :

Gas-phase concentration of the contaminant, g/m3

CL :

Fraction of cloud cover

Cm :

Concentration of suspended solid, g/m3

CNH3 :

Concentration of ammonia nitrogen, g/m3

CNO3 :

Concentration of nitrate nitrogen, g/m3

CON :

Concentration of organic nitrogen, g/m3

COP :

Concentration of organic phosphorus, g/m3

cp :

Specific heat capacity

CPO4 :

Concentration of orthophosphate, g/m3

Ctb,i :

Total concentration of contaminant in bed layer i

Cti :

Contaminant concentration associated with organism i in unit volume of water column, g/m3

Ctw :

Total concentration of contaminant in the water column, g/m3

Db :

Sediment deposition rate, m/d

Dx :

Longitudinal dispersion coefficient, m2/s

eair :

Air vapor pressure, mb

εair :

Emissivity value of air

Eb :

Sediment erosion rate, m/d

es :

Saturation vapor pressure, mb

εwater :

Emissivity value of water

fact :

Factor for respiratory rate associated with swimming or active respiratory fraction

fdb,1 :

Fraction of dissolved contaminant in bed surface layer

fden :

Density-dependent respiration factor

fdw :

Fraction of dissolved concentration to the total concentration of contaminant in water column

fdyn :

Proportion of assimilated energy lost to specific dynamic action

f′ib :

Increase factor in the gamete due to toxic chemicals

f′ig :

Reduction factor in animal growth due to toxic chemicals

fij :

Relative preference factor of predator j feeding on organism i as food

fL :

Light limitation factor

fN :

Nutrient limitation factor

fNH3 :

Fraction of ammonia in dead organic material

fpb :

Fraction of particulate contaminant in the bed sediment

fPBOD :

Fraction of particulate CBOD in total CBOD

fPO4 :

Fraction of phosphate in dead organic material

fPON :

Fraction of particulate organic nitrogen to organic nitrogen

fPOP :

Fraction of particulate organic phosphorus to organic phosphorus

fpw :

Fraction of particulate contaminant in the water column

fshade :

Shading factor defined as the fraction of potential solar radiation that is blocked due to riparian vegetation and landscape

fT :

Temperature limitation factor

fTOX :

Reduction factor due to toxic chemicals

H:

Henry’s law constant, atm m3/mol

hCBOD :

Half-saturation DO concentration for CBOD decay, g/m3

hL :

Half-saturation light intensity for phytoplankton growth

hN :

Half-saturation concentration for nitrogen, g/m3

hN :

Michaelis–Menten constant for nitrogen uptake, mgN/L

hNH3 :

Half-saturation DO concentration for nitrification, g/m3

hNO3 :

Half-saturation DO concentration for denitrification, g/m3

hOP :

Half-saturation phytoplankton conc. for mineralization of phosphorus, g/m3

hP :

Half-saturation concentration for phosphorus, g/m3

I0 :

Light intensity at the water surface

ICi50 :

Internal concentration of the contaminant in the biotic organism

Jdbw :

Vertical diffusion fluxes between water column and bed surface layer, g/m2d

Kb :

Biodegradation rate, 1/d

KCBOD :

CBOD decay rate, 1/d

Kd :

Sorption–desorption coefficient, m3/g

kdbi,i+1 :

Diffusional transfer coefficient of dissolved contaminant between layers i and i + 1

kdbw :

Diffusional transfer coefficient of dissolved contaminant across the bed surface

KH :

Acid-catalyzed hydrolysis rate, m3/mold

Ki :

Carrying capacity of fish i, g/m3

Ki1 :

Uptake rate of contaminant of organism i, 1/d

Ki2 :

Depuration rate of contaminant of organism i, 1/d

Kib :

Gamete loss rate of organism i, 1/d

Kib0 :

Intrinsic gamete mortality rate, 1/d

Kid :

Defecation rate of biotic organism i, 1/d

Kie :

Excretion rate of biotic organism i, 1/d

Kie,max :

Maximum rate of excretion of organism i, 1/d

Kig :

Grazing rate of organism i, 1/d

Kig,max :

Maximum grazing rate of organism i, 1/d

Kim :

Nonpredatory mortality rate of organism i, 1/d

Kim,max :

Maximum rate of nonpredatory mortality of organism i, 1/d

Kir :

Respiration rate of biotic organism i, 1/d

Kir,max :

Maximum respiration rate of organism i, 1/d

Kir0 :

Basal or standard respiratory rate, 1/d

Kire :

Reproduction rate of organism i, 1/d

KN :

Neutral hydrolysis rate, 1/d

KNH3 :

Nitrification rate, 1/d

KNO3 :

Denitrification rate, 1/d

KOH :

Base-catalyzed hydrolysis rate, m3/mol d

KON :

Mineralization rate of organic nitrogen, 1/d

KOP :

Mineralization rate of organic phosphorus, 1/d

Kp :

Photolysis rate, 1/d

KRE :

Depth-averaged reaeration rate, 1/d

ktb,i :

Decay coefficient of contaminant at layer i

KTg1 :

Coefficient representing the relationships of growth on temperature below the optimal temperature

KTg2 :

Coefficient representing the relationships of growth on temperature above the optimal temperature

Kv :

Volatilization rate, m/d

LCi50 :

Internal concentration (the concentration of contaminant in water that causes 50 % mortality for a given period of exposure)

m:

Suspended sediment concentration by volume

pji :

Preference of predator i feeding on organism j as food

pNH3 :

Ammonia preference factor

Q:

Flow discharge, m3/s

ql :

Latent heat flux

qlw :

Long-wave atmospheric radiation

qs :

Convective heat flux

qsw :

Solar radiation

qsw,clear :

Short-wave radiation reaching the water surface on a clear day after atmospheric attenuation

qt,ex :

Total exchange rate of contaminant due to sediment erosion and deposition, g/m2d

qtbi,i+1 :

Total exchange rate of contaminant between layers i and i + 1 due to lowering and rising of the interface

qtw :

Total loading rate of contaminant per unit volume, g/m3d

R:

Universal gas constant, atm m3/mol °K

Rlw :

Reflectivity of water surface for long-wave radiation

Rsw :

Albedo or reflection coefficient

SSOD :

Sediment oxygen demand flux, g/m2s

t:

Time, s

T:

Water temperature, °C

t1 :

Exposure time in toxicity test

t2 :

Period of exposure

Tair :

Air temperature, °K

TK :

Water temperature in °K

Topt :

Optimal temperature for biological growth

Twater :

Water temperature, °K or °C

U:

Flow velocity, m/s

α:

Velocity correction coefficient

αNC :

Stoichiometric ratio of nitrogen to carbon, gN/gC

αPC :

Stoichiometric ratio of phosphorus to carbon, gP/gC

γ:

Light extinction, 1/m

γ0 :

Background light extinction, 1/m

δi :

Thickness of layer i

θ:

Temperature coefficient

λi :

Grazing limitation factor

νi :

Concentration of contaminant in biotic organism i, g/g

ρ:

Water density, kg/m3

ρd :

Dry density of the bed sediment, g/m3

σ:

Stefan–Boltzmann constant, W/m2 °K4

ϕ:

Porosity

ωa :

Settling velocity of phytoplankton, m/d

ωCBOD :

Settling velocity of CBOD, m/s

ωON :

Settling velocity of organic nitrogen, m/s

ωOP :

Settling velocity of organic phosphorus, m/s

References

  1. Jørgensen, S. E. (1980). Lake management. New York: Pergamon Press.

    Google Scholar 

  2. Di Toro, D. M., Fitzpatrick, J. J., & Thomann, R. V. (1981). Water Quality Analysis Simulation Program (WASP) and Model Verification Program (MVP) Documentation (EPA/600/3-81/044). Washington, DC: U.S. Environmental Protection Agency.

    Google Scholar 

  3. Wool, T. A., Ambrose, R. B., Martin, J. L., & Comer, E. A. (2001). The Water Quality Analysis Simulation Program, WASP6. Part A: Model documentation. Athens, GA: U.S. Environmental Protection Agency, Center for Exposure Assessment Modeling.

    Google Scholar 

  4. Chapra, S. C., Pelletier, G. J., & Tao, H. (2008). QUAL2K: A modeling framework for simulating river and stream water quality, version 2.11: Documentation and users manual. Medford, MA: Civil and Environmental Engineering Department, Tufts University.

    Google Scholar 

  5. Cerco, C., & Cole, T. (1994). Three-dimensional eutrophication model of Chesapeake Bay (Technical Report EL-94-4). Vicksburg, MS: U.S. Army Engineer Waterways Experiment Station.

    Google Scholar 

  6. Chao, X., Jia, Y., & Zhu, T. T. (2006). CCHE_WQ water quality module (Technical Report No. NCCHE-TR-2006-01). Oxford, MS.

    Google Scholar 

  7. Christensen, V., & Walters, C. J. (2004). Ecopath with ecosim: Methods, capabilities, and limitations. Ecological Modelling, 172, 109–139.

    Article  Google Scholar 

  8. Hipsey, M. R., Romero, J. R., Antenucci, J. P., & Hamilton, D. (2006). Computational aquatic ecosystem dynamics model: CAEDYM v2 (WP 1387.1 MH). Australia.

    Google Scholar 

  9. Ulanowicz, R. E. (2006). EcoNetwrk – A user’s guide. http://www.glerl.noaa.gov/EcoNetwrk (accessed in 2009).

  10. Park, R. A., & Clough, J. S. (2004). AQUATOX (release 2) modeling environmental fate and ecological effects in aquatic ecosystems. Volume 2: Technical documentation (EPA-823-R-04-002). Washington, DC: Office of Water, U.S. Environmental Protection Agency.

    Google Scholar 

  11. Park, R. A., & Clough, J. S. (2009). AQUATOX (release 3) modeling environmental fate and ecological effects in aquatic ecosystems. Volume 2: Technical documentation (EPA-823-R-09-004). Washington, DC: Office of Water, U.S. Environmental Protection Agency.

    Google Scholar 

  12. Bahadur, R., Amstutz, D. E., & Samuels, W. B. (2013). Water contamination modeling – A review of the state of the science. Journal of Water Resource and Protection, 5, 142–155.

    Article  Google Scholar 

  13. Sharma, D., & Kansal, A. (2013). Assessment of river quality models: A review. Reviews in Environmental Science and Bio/Technology, 12(3), 285–311.

    Article  Google Scholar 

  14. Zhang, W., & Rao, Y. R. (2012). Application of a eutrophication model for assessing water quality in Lake Winnipeg. Journal of Great Lakes Research, 38(3), 158–173.

    Article  CAS  Google Scholar 

  15. Zhang, L., Liu, J., Li, Y., & Zhao, Y. (2013). Applying AQUATOX in determining the ecological risk assessment of polychlorinated biphenyl contamination in Baiyangdian Lake, North China. Ecological Modelling, 265, 239–249.

    Article  CAS  Google Scholar 

  16. Scholz-Starke, B., Ottermanns, R., Rings, U., Floehr, T., Hollert, H., Hou, J., et al. (2013). An integrated approach to model the biomagnification of organic pollutants in aquatic food webs of the Yangtze Three Gorges Reservoir ecosystem using adapted pollution scenarios. Environmental Science and Pollution Research, 20(10), 7009–7026.

    Article  CAS  Google Scholar 

  17. Joyner, T. A., & Rohli, R. V. (2013). Atmospheric influences on water quality: A simulation of nutrient loading for the Pearl River Basin, USA. Environmental Monitoring and Assessment, 185(4), 3467–3476.

    Article  CAS  Google Scholar 

  18. Karaaslan, Y., Akkoyunlu, A., Erturk, F., & Citil, E. (2013). The effect of toxic organic chemicals on Mogan lake. International Journal of Environmental Research, 7(3), 595–604.

    Google Scholar 

  19. Chen, Y., Niu, Z., & Zhang, H. (2013). Eutrophication assessment and management methodology of multiple pollution sources of a landscape lake in North China. Environmental Science and Pollution Research, 20(6), 3877–3889.

    Article  CAS  Google Scholar 

  20. Ambrose, R. B., & Wool, T. A. (2009). WASP7 stream transport – Model theory and user’s guide, Supplement to Water Quality Analysis Simulation Program (WASP), user documentation (EPA/600/R-09/100). Washington, DC: U.S. Environmental Protection Agency.

    Google Scholar 

  21. Tsegaye, T., & Wagaw, M. (2007). Stream water quality modeling using AQUATOX. National Water Quality Meeting, Savannah, GA.

    Google Scholar 

  22. Wu, W., & Vieira, D. A. (2002). One-dimensional channel network model CCHE1D version 3.0 – Technical manual (Technical Report No. NCCHE-TR-2002-1). Oxford, MS.

    Google Scholar 

  23. Vieira, D. (2004). Integrated modeling of watershed and channel processes. Oxford, MS: National Center for Computational Hydroscience and Engineering, The University of Mississippi.

    Google Scholar 

  24. Wu, W. (2007). Computational river dynamics. New York: Taylor & Francis.

    Book  Google Scholar 

  25. Tennessee Valley Authority. (1972). Heat and mass transfer between a water surface and the atmosphere. Division of Water Control Planning.

    Google Scholar 

  26. Deas, M. L., & Lowney, C. L. (2000). Water temperature modeling review. Central Valley, CA.

    Google Scholar 

  27. Genetti, A. J. J. (1998). Engineering and design – Runoff from Snowmelt. Washington, DC: U.S. Army Corps of Engineers.

    Google Scholar 

  28. Kaushik, C. P., Bhavikatti, S. S., & Kaushik, A. (2010). Basic civil and environmental engineering. New Delhi, India: New Age International.

    Google Scholar 

  29. Chapra, S. (1997). Surface water-quality modeling. New York: McGraw-Hill.

    Google Scholar 

  30. Haider, H., Ali, W., & Haydar, S. (2012). Evaluation of various relationships of reaeration rate coefficient for modeling dissolved oxygen in a river with extreme flow variations in Pakistan. Hydrological Processes. doi:10.1002/hyp.9528.

    Google Scholar 

  31. Liu, W.-C., & Chen, W.-B. (2012). Monitoring sediment oxygen demand for assessment of dissolved oxygen distribution in river. Environmental Monitoring and Assessment, 184(9), 5589–5599.

    Article  CAS  Google Scholar 

  32. Brown, L. C., & Barnwell, T. O. (1987). The enhanced stream water quality model QUAL2E and QUAL2E-UNCAS: Documentation and user manual. Athens, GA.

    Google Scholar 

  33. Xu, K., Jiang, H., Juneau, P., & Qiu, B. (2012). Comparative studies on the photosynthetic responses of three freshwater phytoplankton species to temperature and light regimes. Journal of Applied Phycology, 24(5), 1113–1122.

    Article  CAS  Google Scholar 

  34. Bowie, G. L., Mills, W. B., Porcella, D. B., Campbell, C. L., Pagenkopf, J. R., Rupp, G. L., et al. (1985). Rates, constants, and kinetics formulations in surface water quality modeling (EPA/600/3-85/040). Athens, GA: U.S. Environmental Protection Agency.

    Google Scholar 

  35. Rounds, S. A., Wood, T. M., & Lynch, D. D. (1999). Modeling discharge, temperature, and water quality in the Tualatin River, Oregon. USGS Water Supply Paper; 2465-B, U.S. Geological Survey, Oregon.

    Google Scholar 

  36. Kitchell, J. F., Koonce, J. F., O’Neill, R. V., Shugart, H. H., Jr., Magnuson, J. J., & Booth, R. S. (1974). Model of fish biomass dynamics. Transactions of the American Fisheries Society, 103, 786–798.

    Article  Google Scholar 

  37. Leidy, G. R., & Robert, M. J. (1977). The development of fishery compartments and population rate coefficients for use in reservoir ecosystem modeling (Contract Rept. CR-Y-77-1, 134 pp.). Vicksburg, MS: U.S. Army Engineer Waterways Experiment Station.

    Google Scholar 

  38. Di Toro, D. M. (2001). Sediment flux modeling. New York: Wiley.

    Google Scholar 

  39. Thomann, R. V., & Connolly, J. P. (1984). An age dependent model of PCB in a Lake Michigan food chain. New York: Manhattan College.

    Google Scholar 

  40. Connolly, J. P., Zahakos, H. A., Benaman, J., Ziegler, K. C., Rhea, J. R., & Russell, K. (2000). A model of PCB fate in the Upper Hudson River. Environmental Science & Technology, 34, 4076–4087.

    Article  CAS  Google Scholar 

  41. Doyle, M. C., & Caldwell, J. M. (1996). Water-quality, streamflow, and meteorological data for the Tualatin River Basin, Oregon, 1991–1993 (Open-File Report 96-173). Portland, OR: U.S. Geological Survey.

    Google Scholar 

  42. Inthasaro, P. (2010). A one-dimensional aquatic ecology and ecotoxicology model in river systems. PhD dissertation, National Center for Computational Hydroscience and Engineering, The University of Mississippi, Mississippi.

    Google Scholar 

  43. Thomann, R. V., & Mueller, J. A. (1988). Principles of surface water quality modeling and control. New York: Harper & Row.

    Google Scholar 

  44. Rounds, S. A., & Doyle, M. C. (1997). Sediment oxygen demand in the Tualatin River basin, Oregon, 1992–96 (Water-Resources Investigations Report 97-4103). Portland, OR: U.S. Geological Survey.

    Google Scholar 

  45. QEA. (1999). PCBs in the Upper Hudson River Volume 2: A model of PCB fate, transport, and bioaccumulation.

    Google Scholar 

  46. TAMS Consultant, Limno-Tech, Menzie-Cura & Associates, & Tetra Tech. (2000). Volume 2D – Revised baseline modeling report: Hudson River PCBs reassessment RI/FS, Book 3 of 4 – Bioaccumulation models. New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiming Wu Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Inthasaro, P., Wu, W. (2016). One-Dimensional Model of Water Quality and Aquatic Ecosystem/Ecotoxicology in River Systems. In: Wang, L., Yang, C., Wang, MH. (eds) Advances in Water Resources Management. Handbook of Environmental Engineering, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-22924-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22924-9_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22923-2

  • Online ISBN: 978-3-319-22924-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics