Skip to main content

In Vitro Experimental Study for the Determination of Cellular Characteristics of Mesenchymal Stem Cells Using a Non-uniform Deformation Field

  • Conference paper
Book cover Experimental and Applied Mechanics, Volume 4

Abstract

In the present study, relationship between cell orientation angle and strain value of membrane was comprehensively investigated using inhomogeneous strain field. And an axial strain threshold of cell, which corresponds to launch of cell orientation migration, was elucidated. One of the advantages in this study was that the inhomogeneous strain distribution was easily created by making a little improvement in a commonly-used uniaxial stretching device. The strains of two-dimensional stretched membrane were quantified position by position using digital image correlation (DIC) method. A 3D histogram of the cell frequency, which correlated with the cell orientation angle and normal strain of the membrane, made it possible to determine the axial strain threshold accurately. The value was 4.4 ± 0.3 %, which was reasonable compared with past study conducted by other researcher, although the past experiments were based on cyclic uniaxial stretch stimulation (homogeneous strain field). In addition, a preferential axial strain of the cell was achieved using the same technique of the determination of the axial strain threshold. This work has novel values at three points: (i) Determining axial strain threshold of the cells precisely. (ii) First suggestion of preferential axial strain of the cells. (iii) Investigating methodically cell behavior in inhomogeneous strain field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Giannone, M.P. Sheetz, Substrate rigidity and force define form through tyrosine phosphatase and kinase pathways. Trends Cell Biol. 16, 213–223 (2006)

    Article  Google Scholar 

  2. S.L.Y. Woo, M.A. Gomez, Y.K. Woo, W.H. Akeson, Mechanical-properties of tendons and ligaments II. The relationships of immobilization and exercise on tissue remodeling. Biorheology 19, 397–408 (1982)

    Google Scholar 

  3. Y. Morita, S. Watanabe, Y. Ju, B. Xu, Determination of optimal cyclic uniaxial stretches for stem cell-to-tenocyte differentiation under a wide range of mechanical stretch conditions by evaluating gene expression and protein synthesis levels. Acta Bioeng. Biomech. 15, 71–79 (2013)

    Google Scholar 

  4. C. Neidlinger-Wilke, E.S. Grood, J.H.C. Wang, R.A. Brand, L. Claes, Cell alignment is induced by cyclic changes in cell length: studies of cells grown in cyclically stretched substrates. J. Orthop. Res. 19, 286–293 (2001)

    Article  Google Scholar 

  5. H.C. Wang, W. Ip, R. Boissy, E.S. Grood, Cell orientation response to cyclically deformed substrates: experimental validation of a cell model. J. Biomech. 28, 1543–1552 (1995)

    Article  Google Scholar 

  6. L. Zhang, C.J.F. Kahn, H.Q. Chen, N. Tran, X. Wang, Effect of uniaxial stretching on rat bone mesenchymal stem cell: orientation and expressions of collagen types I and III and tenascin-C. Cell Biol. Int. 32, 344–352 (2008)

    Article  Google Scholar 

  7. S.P. Arold, J.Y. Wong, B. Suki, Design of a new stretching apparatus and the effects of cyclic strain and substratum on mouse lung epithelial-12 cells. Ann. Biomed. Eng. 35, 1156–1164 (2007)

    Article  Google Scholar 

  8. G.P. Raeber, M.P. Lutolf, J.A. Hubbell, Part II: fibroblasts preferentially migrate in the direction of principal strain. Biomech. Model. Mechan. 7, 215–225 (2008)

    Article  Google Scholar 

  9. G.G. Yang, R.C. Crawford, J.H.C. Wang, Proliferation and collagen production of human patellar tendon fibroblasts in response to cyclic uniaxial stretching in serum-free conditions. J. Biomech. 37, 1543–1550 (2004)

    Article  Google Scholar 

  10. B. Xu, G. Song, Y. Ju, Effect of focal adhesion kinase on the regulation of realignment and tenogenic differentiation of human mesenchymal stem cells by mechanical stretch. Connect. Tissue Res. 52, 373–379 (2011)

    Article  Google Scholar 

  11. B. Xu, G. Song, Y. Ju, X. Li, Y. Song, S. Watanabe, RhoA/ROCK, cytoskeletal dynamics and focal adhesion kinase are required for mechanical stretch-induced tenogenic differentiation of human mesenchymal stem cells. J. Cell. Physiol. 227, 2722–2729 (2012)

    Article  Google Scholar 

  12. L. Zhang, N. Tran, H.Q. Chen, C.J.F. Kahn, S. Marchal, F. Groubatch, X. Wang, Time-related changes in expression of collagen types I and III and of tenascin-C in rat bone mesenchymal stem cells under co-culture with ligament fibroblasts or uniaxial stretching. Cell Tissue Res. 332, 101–109 (2008)

    Article  Google Scholar 

  13. R.C. Buck, Reorientation response of cells to repeated stretch and recoil of the substratum. Exp. Cell Res. 127, 470–474 (1980)

    Article  Google Scholar 

  14. M.J. Buckley, A.J. Banes, L.G. Levin, B.E. Sumpio, M. Sato, R. Jordan, J. Gilbert, G.W. Link, R.T.S. Tay, Osteoblasts increase their rate of division and align in response to cyclic, mechanical tension in vitro. Bone Miner. 4, 225–236 (1988)

    Google Scholar 

  15. P.C. Dartsch, H. Hammerle, Orientation response of arterial smooth muscle cells to mechanical stimulation. Eur. J. Cell Biol. 41, 339–346 (1986)

    Google Scholar 

  16. M.A. Sutton, Digital image correlation for shape and deformation measurements, in Springer handbook of experimental solid mechanics, ed. by W.N. Sharpe (Springer, New York, 2008), pp. 565–600

    Chapter  Google Scholar 

  17. Y. Morita, M. Uchino, M. Todo, Y. Matsushita, K. Arakawa, K. Koyano, Relationship between load-displacement curve and deformation distribution in porcine mandibular periodontium. J. Biomech. Sci. Eng. 4, 336–344 (2009)

    Article  Google Scholar 

  18. Y. Morita, Y. Matsushita, M. Todo, K. Koyano, Experimental study on displacement and strain distributions of bone model with dental implant. Appl. Mech. Mater. 83, 73–77 (2011)

    Article  Google Scholar 

  19. H. Inoh, N. Ishiguro, S.I. Sawazaki, H. Amma, M. Miyazu, H. Iwata, M. Sokabe, K. Naruse, Uni-axial cyclic stretch induces the activation of transcription factor nuclear factor B in human fibroblast cells. FASEB J. 16, 405 (2002)

    Google Scholar 

  20. Y.C. Yung, H. Vandenburgh, D.J. Mooney, Cellular strain assessment tool (CSAT): precision-controlled cyclic uniaxial tensile loading. J. Biomech. 42, 178–182 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuyuki Morita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Morita, Y., Sato, T., Watanabe, S., Ju, Y. (2016). In Vitro Experimental Study for the Determination of Cellular Characteristics of Mesenchymal Stem Cells Using a Non-uniform Deformation Field. In: Sciammarella, C., Considine, J., Gloeckner, P. (eds) Experimental and Applied Mechanics, Volume 4. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-22449-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22449-7_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22448-0

  • Online ISBN: 978-3-319-22449-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics