Skip to main content

Finding Pairwise Intersections Inside a Query Range

  • Conference paper
  • First Online:
  • 1714 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9214))

Abstract

We study the following problem: preprocess a set \(\mathcal {O}\) of objects into a data structure that allows us to efficiently report all pairs of objects from \(\mathcal {O}\) that intersect inside an axis-aligned query range \(Q\). We present data structures of size \(O(n\,\mathrm {polylog}\,n)\) and with query time \(O((k+1)\,\mathrm {polylog}\, n)\) time, where k is the number of reported pairs, for two classes of objects in the plane: axis-aligned rectangles and objects with small union complexity. For the 3-dimensional case where the objects and the query range are axis-aligned boxes in \(\mathbb {R}^3\), we present a data structure of size \(O(n\sqrt{n}\, \mathrm {polylog}\, n)\) and query time \(O((\sqrt{n}+k)\,\mathrm {polylog}\,n)\). When the objects and query are fat, we obtain \(O((k+1)\,\mathrm {polylog}\,n)\) query time using \(O(n\,\mathrm {polylog}\,n)\) storage.

M. de Berg and A.D. Mehrabi were supported by the Netherlands Organization for Scientific Research (NWO) under grants 024.002.003 and 612.001.118, respectively. J. Gudmundsson was supported by the Australian Research Council (project numbers FT100100755 and DP150101134)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, P.K., Erickson, J.: Geometric range searching and its relatives. Contemporary Mathematics 223, 1–56 (1999)

    Article  MathSciNet  Google Scholar 

  2. Aronov, B., de Berg, M., Ezra, E., Sharir, M.: Improved bounds for the union of locally fat objects in the plane. SIAM J. Comput. 43(2), 543–572 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer (2008)

    Google Scholar 

  4. Chazelle, B.: Filtering search: A new approach to query-answering. SIAM J. Comput. 15, 703–724 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chazelle, B.: A functional approach to data structures and its use in multidimensional searching. SIAM J. Comput. 17, 427–462 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chazelle, B., Edelsbrunner, H., Guibas, L.J., Sharir, M.: Algorithms for bichromatic line-segment problems and polyhedral terrains. Algorithmica 11, 116–132 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Clarkson, K.L., Shor, P.W.: Applications of random sampling in computational geometry. II. Discr. Comput. Geom. I 4, 387–421 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Edelsbrunner, H., Guibas, L.J., Stolfi, J.: Optimal point location in a monotone subdivision. SIAM J. Comput. 15, 317–340 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. Edelsbrunner, H., Overmars, M.H., Seidel, R.: Some methods of computational geometry applied to computer graphics. Comput. Vision, Graphics and Image Proc. 28, 92–108 (1984)

    Article  MATH  Google Scholar 

  10. Gajentaan, A., Overmars, M.H.: On a class of \(O(n^2)\) problems in computational geometry. Comput. Geom. Theory Appl. 5, 165–185 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goodman, J.E., O’Rourke, J.: Range Searching. Handbook of Discrete and Computational Geometry, 2nd edn., Chapter 36 (2004)

    Google Scholar 

  12. Keden, K., Livne, R., Pach, J., Sharir, M.: On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles. Discr. Comput. Geom. 1, 59–71 (1986)

    Article  Google Scholar 

  13. Rahul, S., Das, A.S., Rajan, K.S., Srinatan, K.: Range-aggregate queries involving geometric aggregation operations. In: Proc. Workshop on Alg. Comp. vol. 1, pp. 122–133 (2011)

    Google Scholar 

  14. Subramanian, S., Ramaswamy, S.: The P-range tree: A new data structure for range searching in secondary memory. In: Proc. 6th ACM-SIAM Symp. Discr. Alg., pp. 378–387 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali D. Mehrabi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

de Berg, M., Gudmundsson, J., Mehrabi, A.D. (2015). Finding Pairwise Intersections Inside a Query Range. In: Dehne, F., Sack, JR., Stege, U. (eds) Algorithms and Data Structures. WADS 2015. Lecture Notes in Computer Science(), vol 9214. Springer, Cham. https://doi.org/10.1007/978-3-319-21840-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21840-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21839-7

  • Online ISBN: 978-3-319-21840-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics