Skip to main content

Mesocircuit Mechanisms Underlying Recovery of Consciousness Following Severe Brain Injuries: Model and Predictions

  • Chapter
Brain Function and Responsiveness in Disorders of Consciousness

Abstract

This chapter reviews the mesocircuit hypothesis for the recovery of consciousness after severe brain injuries. Building up from a single premise that multifocal brain injuries typically produce widespread neuronal death and dysfunction, the mesocircuit model proposes a lawful circuit-level mechanism on the basis of known anatomical and physiological specializations of the corticothalamic system. The hypothesis is deeply generative of testable predictions at the mesocircuit and cellular level across multiple cerebral structures. Recent tests of some of these predictions are discussed as well as next steps in evaluating theoretical implications of the mesocircuit model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Posner J, Saper C, Schiff N, Plum F (2007) Plum and Posner’s stupor and coma. Oxford University Press, New York

    Google Scholar 

  2. Brown EN, Lydic R, Schiff ND (2010) General anesthesia, sleep, and coma. N Engl J Med 363:2638–2650

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Schiff ND (2010) Recovery of consciousness after brain injury: a mesocircuit hypothesis. Trends Neurosci 33:1–9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Schiff ND, Posner JB (2007) Another “awakenings”. Ann Neurol 62:5–7

    Article  CAS  PubMed  Google Scholar 

  5. Williams ST et al (2013) Common resting brain dynamics indicate a possible mechanism underlying zolpidem response in severely brain-injured subjects. Elife 2:e01157

    PubMed Central  PubMed  Google Scholar 

  6. Adams JH, Graham DI, Jennett B (2000) The neuropathology of the vegetative state after acute insult. Brain 123:1327–1338

    Article  PubMed  Google Scholar 

  7. Jennett B et al (2001) Neuropathology in vegetative and severely disabled patients after head injury. Neurology 56:486–490

    Article  CAS  PubMed  Google Scholar 

  8. Maxwell WL et al (2006) Thalamic nuclei after human blunt head injury. J Neuropathol Exp Neurol 65(5):478–488

    Article  PubMed  Google Scholar 

  9. Gold L, Lauritzen M (2002) Neuronal deactivation explains decreased cerebellar blood flow in response to focal cerebral ischemia or suppressed neocortical function. Proc Natl Acad Sci 99:7699–7704

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Schiff ND (2008) Central thalamic contributions to arousal regulation and neurological disorders of consciousness. Ann N Y Acad Sci 1129:105–118

    Article  PubMed  Google Scholar 

  11. Grillner S, Hellgren J, Ménard A, Saitoh K, Wikström MA (2005) Mechanisms for selection of basic motor programs—roles for the striatum and pallidum.Trends Neurosci 28:364–370

    Google Scholar 

  12. Giacino JT, Fins JJ, Laureys S, Schiff ND (2014) Disorders of consciousness after acquired brain injury: the state of the science. Nat Rev Neurol 10(2):99–114

    Article  PubMed  Google Scholar 

  13. Laureys S, Schiff ND (2012) Coma and consciousness: paradigms (re)framed by neuroimaging. Neuroimage 61:478–491

    Article  PubMed  Google Scholar 

  14. Fernandez-Espejo D, Soddu A, Cruse D, Palacios EM et al (2012) Role for the default mode network in the bases of disorders of consciousness. Ann Neurol 72:335–343

    Article  PubMed  Google Scholar 

  15. Fridman EA, Beattie BJ, Broft A, Laureys S, Schiff ND (2014) Regional cerebral metabolic patterns demonstrate the role of anterior forebrain mesocircuit dysfunction in the severely injured brain. Proc Natl Acad Sci U S A 111(17):6473–6478

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Schiff ND, Nauvel TN, Victor JD (2014) Large-scale brain dynamics in disorders of consciousness. Curr Opin Neurobiol 25:7–14

    Article  CAS  PubMed  Google Scholar 

  17. Drover JD et al (2011) Are low frequency oscillations in the EEG of severely injured brains a marker for functional reserve of cortical neurons? Society for neuroscience 39th annual meeting. Abstract 659.8

    Google Scholar 

  18. Llinás RR, Ribary U, Jeanmonod D, Kronberg E, Mitra PP (1999) Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci 96:15222–15227

    Article  PubMed Central  PubMed  Google Scholar 

  19. Timofeev I, Grenier F, Bazhenov M, Sejnowski TJ, Steriade M (2000) Origin of slow cortical oscillations in deafferented cortical slabs. Cereb Cortex 10:1185–1199

    Article  CAS  PubMed  Google Scholar 

  20. Silva LR, Amitai Y, Connors BW (1991) Intrinsic oscillations of neocortex generated by layer 5 pyramidal neurons. Science 251:432–435

    Article  CAS  PubMed  Google Scholar 

  21. Giacino J, Fins JJ, Machado A, Schiff ND (2012) Central thalamic deep brain stimulation to promote recovery from chronic posttraumatic minimally conscious state: challenges and opportunities. Neuromodulation 15(4):339–349

    Article  PubMed  Google Scholar 

  22. Giacino JT et al (2012) Placebo-controlled trial of amantadine for severe traumatic brain injury. N Engl J Med 366:819–826

    Article  CAS  PubMed  Google Scholar 

  23. Llinás R, Urbano FJ, Leznik E, Ramírez RR, van Marle HJF (2005) Rhythmic and dysrhythmic thalamocortical dynamics: GABA systems and the edge effect. Trends Neurosci 28:325–333

    Article  PubMed  Google Scholar 

  24. Schomer DL, Da Silva FL (2012) Niedermeyer’s electroencephalography: basic principles, clinical applications, and related fields. Wolters Kluwer Health, Philadelphia

    Google Scholar 

  25. Conte MM et al (2010) Longitudinal changes in the EEG spectrum during recovery after severe brain injury. Society for neuroscience 39th annual meeting. Abstract 659.8

    Google Scholar 

  26. Buckwalter JA, Parvizi J, Morecraft RJ, van Hoesen GW (2008) Thalamic projections to the posteromedial cortex in the macaque. J Comp Neurol 507:1709–1733

    Article  PubMed Central  PubMed  Google Scholar 

  27. Heckers S, Geula C, Mesulam MM (1992) Cholinergic innervation of the human thalamus: dual origin and differential nuclear distribution. J Comp Neurol 325:68–82

    Article  CAS  PubMed  Google Scholar 

  28. Xie G, Deschamps A, Backman SB et al (2011) Critical involvement of the thalamus and precuneus during restoration of consciousness with physostigmine in humans during propofol anaesthesia: a positron emission tomography study. Br J Anaesth 106:548–557

    Article  CAS  PubMed  Google Scholar 

  29. Fridman EA, Schiff ND (2014) Neuromodulation of the conscious state following severe brain injuries. Curr Opin Neurobiol 29C:172–177

    Article  Google Scholar 

  30. Schnakers C et al (2008) Measuring the effect of amantadine in chronic anoxic minimally conscious state. J Neurol Neurosurg Psychiatry 79(2):225–227

    Article  CAS  PubMed  Google Scholar 

  31. Schiff ND et al (2007) Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature 448:600–603

    Article  CAS  PubMed  Google Scholar 

  32. Lutkenhoff ES et al (2015) Thalamic and extrathalamic mechanisms of consciousness after severe brain injury. Ann Neurol 78(1):68–76

    Article  PubMed  Google Scholar 

  33. Lutkenhoff ES, McArthur DL, Hua X, Thompson PM, Vespa PM, Monti MM (2013) Thalamic atrophy in antero-medial and dorsal nuclei correlates with six-month outcome after severe brain injury. Neuroimage Clin 3:396–404

    Article  PubMed Central  PubMed  Google Scholar 

  34. Steriade M, Timofeev I, Grenier F (2001) Natural waking and sleep states: a view from inside neocortical neurons. J Neurophysiol 85:1969–1985

    CAS  PubMed  Google Scholar 

  35. Llinás R, Urbano FJ, Leznik E, Ramírez RR, van Marle HJ (2005) Rhythmic and dysrhythmic thalamocortical dynamics: GABA systems and the edge effect. Trends Neurosci 28(6):325–333

    Google Scholar 

  36. Drover JD, Conte MM, Victor JD, Schiff ND (2012) Utilizing hierarchical decomposition to determine the causal nature of low frequency oscillations in unrecovered severe brain injury. Society for neuroscience 42nd annual meeting. Abstract 553.15

    Google Scholar 

  37. Chatelle C et al (2014) Changes in cerebral metabolism in patients with a minimally conscious state responding to zolpidem. Front Hum Neurosci 8:917

    Article  PubMed Central  PubMed  Google Scholar 

  38. Liu AA, Voss HU, Dyke JP, Heier LA, Schiff ND (2011) Arterial spin labeling and altered cerebral blood flow patterns in the minimally conscious state. Neurology 77(16):1518–1523

    Google Scholar 

  39. Repucci MA, Schiff ND, Victor JD (2001) General strategy for hierarchical decomposition of multivariate time series: implications for temporal lobe seizures. Ann Biomed Eng 29:1135–1149

    Article  CAS  PubMed  Google Scholar 

  40. Conte MM, Drover JD, Victor JD, Schiff ND (2012) Hierarchical decomposition (HD) of resting-state EEG in recovery following severe brain injury identifies causal influence of high frequency activity (beta band) over anterior forebrain. Society for neuroscience 42nd annual meeting. Abstract 553.16

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schiff, N.D. (2016). Mesocircuit Mechanisms Underlying Recovery of Consciousness Following Severe Brain Injuries: Model and Predictions. In: Monti, M., Sannita, W. (eds) Brain Function and Responsiveness in Disorders of Consciousness. Springer, Cham. https://doi.org/10.1007/978-3-319-21425-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21425-2_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21424-5

  • Online ISBN: 978-3-319-21425-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics