Skip to main content

Applications in X-ray Testing

  • Chapter
  • First Online:

Abstract

In this chapter, relevant applications on X-ray testing are described. We cover X-ray testing in (i) castings, (ii) welds, (iii) baggage, (iv) natural products, and (v) others (like cargos and electronic circuits). For each application, the state of the art is presented. Approaches in each application are summarized showing how they use computer vision techniques. A detailed approach is shown in each application and some examples using Matlab are given in order to illustrate the performance of the methods.

Cover image: 3D representation of the X-ray image of a wheel (X-ray image C0023_0001 colored with ‘sinmap’ colormap).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The gradient image is computed by taking the square root of the sum of the squares of the gradient in a horizontal and vertical direction. These are calculated by the convolution of the X-ray image with the first derivative (in the corresponding direction) of the Gaussian low-pass filter used in the LoG-filter.

  2. 2.

    It is possible to use a CAD model of the casting to evaluate this criterion more precisely. Using this model, we could discriminate a small hole of the regular structure that is identified as a potential flaw. Additionally, the CAD model can be used to inspect the casting geometry, as shown in [15].

  3. 3.

    The saliency function is implemented in Xsaliency (see Appendix B) of \(\mathbb {X}\) VIS Toolbox.

  4. 4.

    We use in our experiments a fast implementation of multiple view geometry algorithms from Balu Toolbox [83].

  5. 5.

    We used in our experiments fast implementations of SIFT and KNN (based on k-d tree) from VLFeat Toolbox [85].

  6. 6.

    We used in our experiments a fast implementation of Mean Shift from PMT Toolbox [86].

  7. 7.

    The images tested in our experiments come from public GDXray database [87].

  8. 8.

    In this problem, the projective factorization can be used as well [14], however, our simplifying assumption is that only small depth variations occur and an affine model may be used.

References

  1. Mery, D.: Automated radioscopic testing of aluminum die castings. Mater. Eval. 64(2), 135–143 (2006)

    Google Scholar 

  2. Carrasco, M., Mery, D.: Automatic multiple view inspection using geometrical tracking and feature analysis in aluminum wheels. Mach. Vis. Appl. 22(1), 157–170 (2011)

    Article  Google Scholar 

  3. Li, X., Tso, S.K., Guan, X.P., Huang, Q.: Improving automatic detection of defects in castings by applying wavelet technique. IEEE Trans. Ind. Electron. 53(6), 1927–1934 (2006)

    Article  Google Scholar 

  4. Mery, D., Filbert, D.: Automated flaw detection in aluminum castings based on the tracking of potential defects in a radioscopic image sequence. IEEE Trans. Robot. Autom. 18(6), 890–901 (2002)

    Article  Google Scholar 

  5. Mery, D.: Automated detection in complex objects using a tracking algorithm in multiple X-ray views. In: Proceedings of the 8th IEEE Workshop on Object Tracking and Classification Beyond the Visible Spectrum (OTCBVS 2011), in Conjunction with CVPR 2011, pp. 41–48. Colorado Springs (2011)

    Google Scholar 

  6. Pieringer, C., Mery, D.: Flaw detection in aluminium die castings using simultaneous combination of multiple views. Insight 52(10), 548–552 (2010)

    Article  Google Scholar 

  7. Pizarro, L., Mery, D., Delpiano, R., Carrasco, M.: Robust automated multiple view inspection. Pattern Anal. Appl. 11(1), 21–32 (2008)

    Article  MathSciNet  Google Scholar 

  8. Ramírez, F., Allende, H.: Detection of flaws in aluminium castings: a comparative study between generative and discriminant approaches. Insight-Non-Destructive Test. Cond. Monit. 55(7), 366–371 (2013)

    Article  Google Scholar 

  9. Tang, Y., Zhang, X., Li, X., Guan, X.: Application of a new image segmentation method to detection of defects in castings. Int. J. Adv. Manuf. Technol. 43(5–6), 431–439 (2009)

    Article  Google Scholar 

  10. Zhao, X., He, Z., Zhang, S.: Defect detection of castings in radiography images using a robust statistical feature. JOSA A 31(1), 196–205 (2014)

    Article  Google Scholar 

  11. Zhao, X., He, Z., Zhang, S., Liang, D.: A sparse-representation-based robust inspection system for hidden defects classification in casting components. Neurocomputing 153(0), 1–10 (2015)

    Article  Google Scholar 

  12. Faugeras, O.: Three-Dimensional Computer Vision: A Geometric Viewpoint. The MIT Press, Cambridge (1993)

    Google Scholar 

  13. Mery, D., Filbert, D.: Classification of potential defects in automated inspection of aluminium castings using statistical pattern recognition. In: 8th European Conference on Non-Destructive Testing (ECNDT 2002), pp. 1–10. Barcelona (2002)

    Google Scholar 

  14. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  15. Noble, A., Gupta, R., Mundy, J., Schmitz, A., Hartley, R.: High precision X-ray stereo for automated 3D CAD-based inspection. IEEE Trans. Robot. Autom. 14(2), 292–302 (1998)

    Article  Google Scholar 

  16. Bentley, J.: Multidimensional binary search trees used for associative searching. Commun. ACM 18(9), 509–517 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mery, D.: Flaw simulation in castings inspection by radioscopy. Insight 43(10), 664–668 (2001)

    Google Scholar 

  18. Mery, D., Filbert, D., Jaeger, T.: Image processing for fault detection in aluminum castings. In: MacKenzie, D., Totten, G. (eds.) Analytical Characterization of Aluminum and Its Alloys. Marcel Dekker, New York (2003)

    Google Scholar 

  19. Filbert, D., Klatte, R., Heinrich, W., Purschke, M.: Computer aided inspection of castings. In: IEEE-IAS Annual Meeting, pp. 1087–1095. Atlanta (1987)

    Google Scholar 

  20. Heinrich, W.: Automated inspection of castings using X-ray testing. Ph.D. thesis, Institute for Measurement and Automation, Faculty of Electrical Engineering, Technical University of Berlin (1988) (in German)

    Google Scholar 

  21. Hecker, H.: Ein neues Verfahren zur robusten Röntgenbildauswertung in der automatischen Gußteilprüfung. Ph.D. thesis, vom Fachbereich Elektrotechnik, Technische Universität Berlin (1995)

    Google Scholar 

  22. Mery, D., Filbert, D., Parspour, N.: Improvement in automated aluminum casting inspection by finding correspondence of potential flaws in multiple radioscopic images. In: Proceedings of the 15th World Conference on Non-Destructive Testing (WCNDT-2000). Rome (2000)

    Google Scholar 

  23. da Silva, R., Mery, D.: State-of-the-art of weld seam inspection using X-ray testing: part I—image processing. Mater. Eval. 65(6), 643–647 (2007)

    Google Scholar 

  24. da Silva, R., Mery, D.: State-of-the-art of weld seam inspection using X-ray testing: part II—pattern recognition. Mater. Eval. 65(9), 833–838 (2007)

    Google Scholar 

  25. Lindgren, E.: Detection, 3-D positioning, and sizing of small pore defects using digital radiography and tracking. EURASIP J. Adv. Signal Process. 2014(1), 1–17 (2014)

    Article  Google Scholar 

  26. Shao, J., Du, D., Chang, B., Shi, H.: Automatic weld defect detection based on potential defect tracking in real-time radiographic image sequence. NDT E Int. 46, 14–21 (2012)

    Article  Google Scholar 

  27. Anand, R., Kumar, P., et al.: Flaw detection in radiographic weldment images using morphological watershed segmentation technique. NDT E Int. 42(1), 2–8 (2009)

    Article  Google Scholar 

  28. Baniukiewicz, P.: Automated defect recognition and identification in digital radiography. J. Nondestruct. Eval. 33(3), 327–334 (2014)

    Article  Google Scholar 

  29. Gao, W., Hu, Y.H.: Real-time X-ray radiography for defect detection in submerged arc welding and segmentation using sparse signal representation. Insight-Non-Destructive Test. Cond. Monit. 56(6), 299–307 (2014)

    Article  MathSciNet  Google Scholar 

  30. Kaftandjian, V., Dupuis, O., Babot, D., Zhu, Y.M.: Uncertainty modelling using Dempster-Shafer theory for improving detection of weld defects. Pattern Recognit. Lett. 24(1), 547–564 (2003)

    Article  Google Scholar 

  31. Kumar, J., Anand, R., Srivastava, S.: Flaws classification using ANN for radiographic weld images. In: 2014 International Conference on Signal Processing and Integrated Networks (SPIN), pp. 145–150 (2014)

    Google Scholar 

  32. Kumar, J., Anand, R., Srivastava, S.: Multi-class welding flaws classification using texture feature for radiographic images. In: 2014 International Conference on Advances in Electrical Engineering (ICAEE), pp. 1–4 (2014)

    Google Scholar 

  33. Liao, T.: Classification of weld flaws with imbalanced class data. Expert Syst. Appl. 35(3), 1041–1052 (2008)

    Article  Google Scholar 

  34. Liao, T.W.: Improving the accuracy of computer-aided radiographic weld inspection by feature selection. NDT E Int. 42, 229–239 (2009)

    Article  Google Scholar 

  35. Mery, D., Berti, M.A.: Automatic detection of welding defects using texture features. Insight-Non-Destructive Test. Cond. Monit. 45(10), 676–681 (2003)

    Article  Google Scholar 

  36. Mery, D.: Automated detection of welding defects without segmentation. Mater. Eval. 69(6), 657–663 (2011)

    Google Scholar 

  37. Mu, W., Gao, J., Jiang, H., Wang, Z., Chen, F., Dang, C.: Automatic classification approach to weld defects based on PCA and SVM. Insight-Non-Destructive Test. Cond. Monit. 55(10), 535–539 (2013)

    Article  Google Scholar 

  38. Shi, D.H., Gang, T., Yang, S.Y., Yuan, Y.: Research on segmentation and distribution features of small defects in precision weldments with complex structure. NDT E Int. 40, 397–404 (2007)

    Article  Google Scholar 

  39. da Silva, R.R., Calôba, L.P., Siqueira, M.H., Rebello, J.M.: Pattern recognition of weld defects detected by radiographic test. NDT E Int. 37(6), 461–470 (2004)

    Article  Google Scholar 

  40. Vilar, R., Zapata, J., Ruiz, R.: An automatic system of classification of weld defects in radiographic images. NDT E Int. 42(5), 467–476 (2009)

    Article  Google Scholar 

  41. Wang, Y., Sun, Y., Lv, P., Wang, H.: Detection of line weld defects based on multiple thresholds and support vector machine. NDT E Int. 41(7), 517–524 (2008)

    Article  Google Scholar 

  42. Yirong, Z., Dong, D., Baohua, C., Linhong, J., Jiluan, P.: Automatic weld defect detection method based on Kalman filtering for real-time radiographic inspection of spiral pipe. NDT E Int. 72, 1–9 (2015)

    Article  Google Scholar 

  43. Zapata, J., Vilar, R., Ruiz, R.: Automatic inspection system of welding radiographic images based on ANN under a regularisation process. J. Nondestruct. Eval. 31(1), 34–45 (2012)

    Article  Google Scholar 

  44. Viola, P., Jones, M.: Robust real-time object detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)

    Article  Google Scholar 

  45. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Conference on Computer Vision and Pattern Recognition (CVPR2005), vol. 1, pp. 886–893 (2005)

    Google Scholar 

  46. Liao, T.: Classification of welding flaw types with fuzzy expert systems. Fuzzy Sets Syst. 108, 145–158 (2003)

    Article  Google Scholar 

  47. Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of 4th Alvey Vision Conferences, pp. 147–152 (1988)

    Google Scholar 

  48. Montabone, S., Soto, A.: Human detection using a mobile platform and novel features derived from a visual saliency mechanism. Image Vis. Comput. 28(3), 391–402 (2010)

    Article  Google Scholar 

  49. Abusaeeda, O., Evans, J., Downes, D., Chan, J.: View synthesis of KDEX imagery for 3D security X-ray imaging. In: Proceedings of 4th International Conference on Imaging for Crime Detection and Prevention (ICDP-2011) (2011)

    Google Scholar 

  50. Baştan, M., Yousefi, M.R., Breuel, T.M.: Visual words on baggage X-ray images. Computer Analysis of Images and Patterns, pp. 360–368. Springer, New York (2011)

    Google Scholar 

  51. Baştan, M., Byeon, W., Breuel, T.M.: Object recognition in multi-view dual X-ray images. In: British Machine Vision Conference BMVC (2013)

    Google Scholar 

  52. Chen, Z., Zheng, Y., Abidi, B.R., Page, D.L., Abidi, M.A.: A combinational approach to the fusion, de-noising and enhancement of dual-energy X-ray luggage images. In: Workshop of IEEE Conference on Computer Vision and Pattern Recognition (CVPR-2005) (2005)

    Google Scholar 

  53. Ding, J., Li, Y., Xu, X., Wang, L.: X-ray image segmentation by attribute relational graph matching. In: 8th IEEE International Conference on Signal Processing, vol. 2 (2006)

    Google Scholar 

  54. Franzel, T., Schmidt, U., Roth, S.: Object detection in multi-view X-ray images. Pattern Recognit. 7476, 144–154 (2012)

    Article  Google Scholar 

  55. Heitz, G., Chechik, G.: Object separation in X-ray image sets. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR-2010), pp. 2093–2100 (2010)

    Google Scholar 

  56. Mansoor, M., Rajashankari, R.: Detection of concealed weapons in X-ray images using fuzzy K-NN. Int. J. Comput. Sci. Eng. Inf. Technol. 2(2), 187–196 (2012)

    Google Scholar 

  57. Mery, D., Riffo, V., Mondragon, G., Zuccar, I.: Detection of regular objects in baggages using multiple X-ray views. Insight 55(1), 16–21 (2013)

    Article  Google Scholar 

  58. Mery, D., Riffo, V., Zuccar, I., Pieringer, C.: Automated X-ray object recognition using an efficient search algorithm in multiple views. In: Proceedings of the 9th IEEE CVPR Workshop on Perception Beyond the Visible Spectrum, Portland (2013)

    Google Scholar 

  59. Mery, D.: Inspection of complex objects using multiple-X-ray views. IEEE/ASME Trans. Mechatron. 20(1), 338–347 (2015)

    Article  MathSciNet  Google Scholar 

  60. Lu, Q., Conners, R.: Using image processing methods to improve the explosive detection accuracy. IEEE Trans. Appl. Rev. Part C: Syst Man Cybern. 36(6), 750–760 (2006)

    Google Scholar 

  61. Riffo, V., Mery, D.: Active X-ray testing of complex objects. Insight 54(1), 28–35 (2012)

    Article  Google Scholar 

  62. Riffo, V., Mery, D.: Automated detection of threat objects using Adapted Implicit Shape Model. IEEE Transactions on Systems, Man, and Cybernetics: Systems (2015). doi:10.1109/TSMC.2015.2439233

  63. Schmidt-Hackenberg, L., Yousefi, M.R., Breuel, T.M.: Visual cortex inspired features for object detection in X-ray images. In: 2012 21st International Conference on Pattern Recognition (ICPR), pp. 2573–2576. IEEE (2012)

    Google Scholar 

  64. Turcsany, D., Mouton, A., Breckon, T.P.: Improving feature-based object recognition for X-ray baggage security screening using primed visualwords. In: IEEE International Conference on Industrial Technology (ICIT), pp. 1140–1145 (2013)

    Google Scholar 

  65. Uroukov, I., Speller, R.: A preliminary approach to intelligent X-ray imaging for baggage inspection at airports. Signal Process. Res. 4, 1–11 (2015)

    Article  Google Scholar 

  66. Zhang, N., Zhu, J.: A study of X-ray machine image local semantic features extraction model based on bag-of-words for airport security. Int. J. Smart Sens. Intell. Syst. 1, 45–64 (2015)

    Google Scholar 

  67. Zentai, G.: X-ray imaging for homeland security. In: IEEE International Workshop on Imaging Systems and Techniques (IST 2008), pp. 1–6 (2008)

    Google Scholar 

  68. Michel, S., Koller, S., de Ruiter, J., Moerland, R., Hogervorst, M., Schwaninger, A.: Computer-based training increases efficiency in X-ray image interpretation by aviation security screeners. In: 2007 41st Annual IEEE International Carnahan Conference on Security Technology, pp. 201–206 (2007)

    Google Scholar 

  69. Murphy, E.: A rising war on terrorists. IEEE Spectr. 26(11), 33–36 (1989)

    Article  Google Scholar 

  70. Murray, N., Riordan, K.: Evaluation of automatic explosive detection systems. In: Proceedings. Institute of Electrical and Electronics Engineers 29th Annual International Carnahan Conference on Security Technology, pp. 175–179 (1995). doi:10.1109/CCST.1995.524908

  71. Strecker, H.: Automatic detection of explosives in airline baggage using elastic X-ray scatter. Medicamundi 42, 30–33 (1998)

    Google Scholar 

  72. Wales, A., Halbherr, T., Schwaninger, A.: Using speed measures to predict performance in X-ray luggage screening tasks. In: 43rd Annual 2009 International Carnahan Conference on Security Technology, pp. 212–215 (2009)

    Google Scholar 

  73. Abidi, B.R., Zheng, Y., Gribok, A.V., Abidi, M.A.: Improving weapon detection in single energy X-ray images through pseudocoloring. IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 36(6), 784–796 (2006)

    Article  Google Scholar 

  74. Chan, J., Evans, P., Wang, X.: Enhanced color coding scheme for kinetic depth effect X-ray (KDEX) imaging. In: 2010 IEEE International Carnahan Conference on Security Technology (ICCST), pp. 155–160 (2010)

    Google Scholar 

  75. Singh, M., Singh, S.: Optimizing image enhancement for screening luggage at airports. In: Proceedings of the 2005 IEEE International Conference on Computational Intelligence for Homeland Security and Personal Safety, CIHSPS 2005, pp. 131–136 (2005)

    Google Scholar 

  76. Oertel, C., Bock, P.: Identification of objects-of-interest in X-Ray images. In: 35th IEEE Applied Imagery and Pattern Recognition Workshop, AIPR 2006, p. 17 (2006)

    Google Scholar 

  77. Liu, D., Wang, Z.: A united classification system of X-ray image based on fuzzy rule and neural networks. In: 3rd International Conference on Intelligent System and Knowledge Engineering, ISKE 2008, vol. 1, pp. 717–722 (2008)

    Google Scholar 

  78. Nercessian, S., Panetta, K., Agaian, S.: Automatic detection of potential threat objects in X-ray luggage scan images. In: 2008 IEEE Conference on Technologies for Homeland Security, pp. 504–509 (2008). doi:10.1109/THS.2008.4534504

  79. von Bastian, C., Schwaninger, A., Michel, S.: Do Multi-View X-ray Systems Improve X-Ray Image Interpretation in Airport Security Screening?, vol. 52. GRIN Verlag, Munich (2010)

    Google Scholar 

  80. Singh, S., Singh, M.: Explosives detection systems (EDS) for aviation security. Signal Process. 83(1), 31–55 (2003)

    Article  MATH  Google Scholar 

  81. Wells, K., Bradley, D.: A review of X-ray explosives detection techniques for checked baggage. Appl. Radiat. Isot. 70, 1729–1746 (2012)

    Article  Google Scholar 

  82. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)

    Article  Google Scholar 

  83. Mery, D.: BALU: a toolbox Matlab for computer vision, pattern recognition and image processing. http://dmery.ing.puc.cl/index.php/balu

  84. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  85. Vedaldi, A., Fulkerson, B.: VLFeat: an open and portable library of computer vision algorithms. In: Proceedings of the International Conference on Multimedia, pp. 1469–1472. ACM (2010)

    Google Scholar 

  86. Dollár, P.: Piotr’s Image and Video Matlab Toolbox (PMT). http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html

  87. Mery, D., Riffo, V., Zscherpel, U., Mondragon, G., Lillo, I., Zuccar, I., Lobel, H., Carrasco, M.: GDXray: the GRIMA database of X-ray images. http://dmery.ing.puc.cl/index.php/material/gdxray/ (2015)

  88. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: 9th European Conference on Computer Vision (ECCV2006). Graz Austria (2006)

    Google Scholar 

  89. Sivic, J., Zisserman, A.: Efficient visual search of videos cast as text retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 31(4), 591–605 (2009)

    Article  Google Scholar 

  90. Mery, D.: Crossing line profile: a new approach to detecting defects in aluminium castings. In: Proceedings of the Scandinavian Conference on Image Analysis (SCIA 2003). Lecture Notes in Computer Science, vol. 2749, pp. 725–732 (2003)

    Google Scholar 

  91. Gobi, A.F.: Towards generalized benthic species recognition and quantification using computer vision. In: 4th Pacific-Rim Symposium on Image and Video Technology (PSIVT2010), Singapore, 14–17 November 2010, pp. 94–100 (2010)

    Google Scholar 

  92. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image Vis. Comput. 22(10), 761–767 (2004)

    Article  Google Scholar 

  93. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  94. Mery, D., Lillo, I., Riffo, V., Soto, A., Cipriano, A., Aguilera, J.: Automated fish bone detection using X-ray testing. J. Food Eng. 2011(105), 485–492 (2011)

    Article  Google Scholar 

  95. Haff, R., Toyofuku, N.: X-ray detection of defects and contaminants in the food industry. Sens. Instrum. Food Qual. Saf. 2(4), 262–273 (2008). doi:10.1007/s11694-008-9059-8

    Article  Google Scholar 

  96. Kwon, J., Lee, J., Kim, W.: Real-time detection of foreign objects using X-ray imaging for dry food manufacturing line. In: Proceedings of IEEE International Symposium on Consumer Electronics, ISCE 2008, pp. 1–4 (2008)

    Google Scholar 

  97. Jiang, J., Chang, H., Wu, K., Ouyang, C., Yang, M., Yang, E., Chen, T., Lin, T.: An adaptive image segmentation algorithm for X-ray quarantine inspection of selected fruits. Comput. Electron. Agric. 60, 190–200 (2008)

    Article  Google Scholar 

  98. Ogawa, Y., Kondo, N., Shibusawa, S.: Inside quality evaluation of fruit by X-ray image. In: Proceedings. 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2003, vol. 2, pp. 1360–1365 (2003)

    Google Scholar 

  99. Haff, R., Slaughter, D.: Real-time X-ray inspection of wheat for infestation by the granary weevil, Sitophilus granarius (l.). Trans. Am. Soc. Agric. Eng. 47, 531–537 (2004)

    Article  Google Scholar 

  100. Bej, G., Akuli, A., Pal, A., Dey, T., Chaudhuri, A., Alam, S., Khandai, R., Bhattacharyya, N.: X-ray imaging and general regression neural network (GRNN) for estimation of silk content in cocoons. In: Proceedings of the 2nd International Conference on Perception and Machine Intelligence, pp. 71–76. ACM (2015)

    Google Scholar 

  101. Karunakaran, C., Jayas, D., White, N.: Identification of wheat kernels damaged by the red flour beetle using X-ray images. Biosyst. Eng. 87(3), 267–274 (2004)

    Article  Google Scholar 

  102. Kelkar, S., Boushey, C.J., Okos, M.: A method to determine the density of foods using X-ray imaging. J. Food Eng. 159, 36–41 (2015)

    Article  Google Scholar 

  103. Mathanker, S., Weckler, P., Bowser, T., Wang, N., Maness, N.: AdaBoost classifiers for pecan defect classification. Comput. Electron. Agric. 77(1), 60–68 (2011)

    Article  Google Scholar 

  104. Neethirajan, S., Karunakaran, C., Symons, S., Jayas, D.: Classification of vitreousness in durum wheat using soft X-rays and transmitted light images. Comput. Electron. Agric. 53(1), 71–78 (2006)

    Article  Google Scholar 

  105. Nielsen, M.S., Christensen, L.B., Feidenhans, R.: Frozen and defrosted fruit revealed with X-ray dark-field radiography. Food Control 39, 222–226 (2014)

    Article  Google Scholar 

  106. Gonzalez, R., Woods, R.: Digital Image Processing, 3rd edn. Pearson, Prentice Hall, Upper Saddle River (2008)

    Google Scholar 

  107. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8(6), 679–698 (1986)

    Google Scholar 

  108. Duan, X., Cheng, J., Zhang, L., Xing, Y., Chen, Z., Zhao, Z.: X-ray cargo container inspection system with few-view projection imaging. Nucl. Instrum. Methods Phys. Res. A 598, 439–444 (2009)

    Article  Google Scholar 

  109. Frosio, I., Borghese, N., Lissandrello, F., Venturino, G., Rotondo, G.: Optimized acquisition geometry for X-ray inspection. In: 2011 IEEE Instrumentation and Measurement Technology Conference (I2MTC), pp. 1–6 (2011)

    Google Scholar 

  110. Kolkoori, S., Wrobel, N., Deresch, A., Redmer, B., Ewert, U.: Dual high-energy X-ray digital radiography for material discrimination in cargo containers. In: 11th European Conference on Non-Destructive Testing (ECNDT 2014), 6–10 October 2014, Prague, Czech Republic (2014)

    Google Scholar 

  111. Zhu, Z., Zhao, L., Lei, J.: 3D measurements in cargo inspection with a gamma-ray linear pushbroom stereo system. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) (2005)

    Google Scholar 

  112. Zhu, Z., Hu, Y.C., Zhao, L.: Gamma/X-ray linear pushbroom stereo for 3D cargo inspection. Mach. Vis. Appl. 21(4), 413–425 (2010)

    Article  Google Scholar 

  113. Mahmood, K., Carmona, P.L., Shahbazmohamadi, S., Pla, F., Javidi, B.: Real time automated counterfeit integrated circuit detection using X-ray microscopy. J. Appl. Opt. (2015). To be published

    Google Scholar 

  114. Uehara, M., Yashiro, W., Momose, A.: Effectiveness of X-ray grating interferometry for non-destructive inspection of packaged devices. J. Appl. Phys. 114(13), 134901 (2013)

    Article  Google Scholar 

  115. Wang, Y., Wang, M., Zhang, Z.: Microfocus X-ray printed circuit board inspection system. Optik-International J. Light Electron Opt. 125(17), 4929–4931 (2014)

    Article  Google Scholar 

  116. Wu, J.H., Yan, X.Y., Wang, G.: High-resolution PCB board defect detection system based on non-destructive detection. Instrum. Tech. Sens. 6, 028 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domingo Mery .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mery, D. (2015). Applications in X-ray Testing. In: Computer Vision for X-Ray Testing. Springer, Cham. https://doi.org/10.1007/978-3-319-20747-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20747-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20746-9

  • Online ISBN: 978-3-319-20747-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics