Skip to main content

Engineered Stem Cell-Based Scaffolds and Patches for Heart Disorders

  • Chapter
Microscale Technologies for Cell Engineering

Abstract

According to the Center for Disease Control (CDC) cardiovascular disease is the leading cause of death in the United States and its prevalence is increasing. During a heart injury, such as myocardial infarction, cardiomyocytes are damaged and cannot be regenerated. Left untreated, this damage can have fatal results. Due to organ shortage, lack of tissue grafts for transplantation, and lack of success from current therapies, stem cell therapy and cardiac tissue engineering have emerged as potential approaches to replace damaged muscle and treat heart injuries. Research efforts in this field focus on the development of innovative biomaterials that can serve as a biomimetic scaffold for growth and differentiation of stem cells into fully functional cardiac tissue. In this chapter, stem cell research, the formation of cardiac tissue from stem cells, cardiac tissue properties, biomimetic material scaffolds, and the convergence of stem cells and biomaterials are explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murphy SL, Xu J et al (2013) Deaths: final data for 2010. Natl Vital Stat Rep 61:1–118

    Google Scholar 

  2. Go A, Mozaffarian D et al (2013) on behalf of the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics – 2013 update: a report from the American Heart Association. Circulation 127:e1–e240

    Article  Google Scholar 

  3. Yannas I, Lee E et al (1989) Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proc Natl Acad Sci 86:933–937

    Article  Google Scholar 

  4. Atala A, Bauer SB et al (2006) Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367:1241–1246

    Article  Google Scholar 

  5. Baiguera S, Jungebluth P et al (2010) Tissue engineered human tracheas for in vivo implantation. Biomaterials 31:8931–8938

    Article  Google Scholar 

  6. Schimming R, Schmelzeisen R (2004) Tissue-engineered bone for maxillary sinus augmentation. J Oral Maxillofac Surg 62:724–729

    Article  Google Scholar 

  7. Waddington, C. H. (1957). The Strategy of the Genes; a Discussion of Some Aspects of Theoretical Biology, Routledge.

    Google Scholar 

  8. Gurdon JB (1962) The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morph 10:622–640

    Google Scholar 

  9. Wilmut I, Schnieke AE et al (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813

    Article  Google Scholar 

  10. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  Google Scholar 

  11. Kelaini S, Cochrane A et al (2014) Direct reprogramming of adult cells: avoiding the pluripotent state. Stem Cells Cloning 7:19–29

    Google Scholar 

  12. Pera MF, Trounson AO (2004) Human embryonic stem cells: prospects for development. Development 131:5515–5525

    Article  Google Scholar 

  13. Rossant J (2008) Stem cells and early lineage development. Cell 132:527–531

    Article  Google Scholar 

  14. Silva J, Smith A (2008) Capturing pluripotency. Cell 132:532–536

    Article  Google Scholar 

  15. Wobus AM, Boheler KR (2005) Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol Rev 85:635–678

    Article  Google Scholar 

  16. Yamanaka S, Li J et al (2008) Pluripotency of embryonic stem cells. Cell Tissue Res 331:5–22

    Article  Google Scholar 

  17. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  Google Scholar 

  18. Thomson JA (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  Google Scholar 

  19. Zaffran S (2002) Early signals in cardiac development. Circ Res 91:457–469

    Article  Google Scholar 

  20. Jacot JG, Martin JC et al (2010) Mechanobiology of cardiomyocyte development. J Biomech 43:93–98

    Article  Google Scholar 

  21. Go AS, Mozaffarian D et al (2014) Heart disease and stroke statistics – 2014 update: a report from the American Heart Association. Circulation 129:e28–e292

    Article  Google Scholar 

  22. Bergmann O, Bhardwaj RD et al (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98–102

    Article  Google Scholar 

  23. Bergmann O, Jovinge S (2014) Cardiac regeneration in vivo: mending the heart from within? Stem Cell Res 13(3 Pt B):523–531

    Article  Google Scholar 

  24. Hsieh PC, Segers VF et al (2007) Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med 13:970–974

    Article  Google Scholar 

  25. Beltrami AP, Barlucchi L et al (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776

    Article  Google Scholar 

  26. Orlic D, Kajstura J et al (2001) Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci U S A 98:10344–10349

    Article  Google Scholar 

  27. Balsam LB, Wagers AJ et al (2004) Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428:668–673

    Article  Google Scholar 

  28. Murry CE, Soonpaa MH et al (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428:664–668

    Article  Google Scholar 

  29. Soonpaa MH, Rubart M et al (2013) Challenges measuring cardiomyocyte renewal. Biochim Biophys Acta 1833:799–803

    Article  Google Scholar 

  30. Murry CE, Reinecke H et al (2006) Regeneration gaps: observations on stem cells and cardiac repair. J Am Coll Cardiol 47:1777–1785

    Article  Google Scholar 

  31. Kattman SJ, Witty AD et al (2011) Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell 8:228–240

    Article  Google Scholar 

  32. Caspi O, Lesman A et al (2007) Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ Res 100:263–272

    Article  Google Scholar 

  33. Zhang J, Wilson GF et al (2009) Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res 104:e30–e41

    Article  Google Scholar 

  34. Bettiol E, Sartiani L et al (2007) Fetal bovine serum enables cardiac differentiation of human embryonic stem cells. Differentiation 75:669–681

    Article  Google Scholar 

  35. Doetschman TC, Eistetter H et al (1985) The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol 87:27–45

    Google Scholar 

  36. Kehat I, Kenyagin-Karsenti D et al (2001) Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 108:407–414

    Article  Google Scholar 

  37. Ng ES, Davis RP et al (2005) Forced aggregation of defined numbers of human embryonic stem cells into embryoid bodies fosters robust, reproducible hematopoietic differentiation. Blood 106:1601–1603

    Article  Google Scholar 

  38. Bauwens CL, Peerani R et al (2008) Control of human embryonic stem cell colony and aggregate size heterogeneity influences differentiation trajectories. Stem Cells 26:2300–2310

    Article  Google Scholar 

  39. Laflamme MA, Chen KY et al (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25:1015–1024

    Article  Google Scholar 

  40. Takahashi T, Lord B et al (2003) Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation 107:1912–1916

    Article  Google Scholar 

  41. Xu C (2002) Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ Res 91:501–508

    Article  Google Scholar 

  42. Wobus AM, Kaomei G et al (1997) Retinoic acid accelerates embryonic stem cell-derived cardiac differentiation and enhances development of ventricular cardiomyocytes. J Mol Cell Cardiol 29:1525–1539

    Article  Google Scholar 

  43. Buggisch M, Ateghang B et al (2007) Stimulation of ES-cell-derived cardiomyogenesis and neonatal cardiac cell proliferation by reactive oxygen species and NADPH oxidase. J Cell Sci 120:885–894

    Article  Google Scholar 

  44. Sauer H, Rahimi G et al (2000) Role of reactive oxygen species and phosphatidylinositol 3-kinase in cardiomyocyte differentiation of embryonic stem cells. FEBS Lett 476:218–223

    Article  Google Scholar 

  45. Sharifpanah F, Wartenberg M et al (2008) Peroxisome proliferator-activated receptor alpha agonists enhance cardiomyogenesis of mouse ES cells by utilization of a reactive oxygen species-dependent mechanism. Stem Cells 26:64–71

    Article  Google Scholar 

  46. Sachinidis A, Schwengberg S et al (2006) Identification of small signalling molecules promoting cardiac-specific differentiation of mouse embryonic stem cells. Cell Physiol Biochem 18:303–314

    Article  Google Scholar 

  47. Willems E, Lanier M et al (2011) A chemical biology approach to myocardial regeneration. J Cardiovasc Transl Res 4:340–350

    Article  Google Scholar 

  48. Mummery C, Ward-van Oostwaard D et al (2003) Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 107:2733–2740

    Article  Google Scholar 

  49. Passier R, Oostwaard DW et al (2005) Increased cardiomyocyte differentiation from human embryonic stem cells in serum-free cultures. Stem Cells 23:772–780

    Article  Google Scholar 

  50. Graichen R, Xu X et al (2008) Enhanced cardiomyogenesis of human embryonic stem cells by a small molecular inhibitor of p38 MAPK. Differentiation 76:357–370

    Article  Google Scholar 

  51. Anderson D, Self T et al (2007) Transgenic enrichment of cardiomyocytes from human embryonic stem cells. Mol Ther 15:2027–2036

    Article  Google Scholar 

  52. Addis RC, Epstein JA (2013) Induced regeneration – the progress and promise of direct reprogramming for heart repair. Nat Med 19:829–836

    Article  Google Scholar 

  53. Ieda M, Fu JD et al (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142:375–386

    Article  Google Scholar 

  54. Miki K, Yoshida Y et al (2013) Making steady progress on direct cardiac reprogramming toward clinical application. Circ Res 113:13–15

    Article  Google Scholar 

  55. Robertson C, Tran DD et al (2013) Concise review: maturation phases of human pluripotent stem cell-derived cardiomyocytes. Stem Cells 31:829–837

    Article  Google Scholar 

  56. Vozzi G, Flaim C et al (2003) Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition. Biomaterials 24:2533–2540

    Article  Google Scholar 

  57. Bettinger CJ, Weinberg EJ et al (2006) Three-dimensional microfluidic tissue‐engineering scaffolds using a flexible biodegradable polymer. Adv Mater 18:165–169

    Article  Google Scholar 

  58. Shachar M, Tsur-Gang O et al (2011) The effect of immobilized RGD peptide in alginate scaffolds on cardiac tissue engineering. Acta Biomater 7:152–162

    Article  Google Scholar 

  59. Sapir Y, Kryukov O et al (2011) Integration of multiple cell-matrix interactions into alginate scaffolds for promoting cardiac tissue regeneration. Biomaterials 32:1838–1847

    Article  Google Scholar 

  60. Maidhof R, Tandon N et al (2012) Biomimetic perfusion and electrical stimulation applied in concert improved the assembly of engineered cardiac tissue. J Tissue Eng Regen Med 6:e12–e23

    Article  Google Scholar 

  61. Radisic M, Marsano A et al (2008) Cardiac tissue engineering using perfusion bioreactor systems. Nat Protoc 3:719–738

    Article  Google Scholar 

  62. Lee JM, Boughner DR (1985) Mechanical properties of human pericardium. Differences in viscoelastic response when compared with canine pericardium. Circ Res 57:475–481

    Article  Google Scholar 

  63. Patterson JT, Gilliland T et al (2012) Tissue-engineered vascular grafts for use in the treatment of congenital heart disease: from the bench to the clinic and back again. Regen Med 7:409–419

    Article  Google Scholar 

  64. Engelmayr GC, Cheng M et al (2008) Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nat Mater 7:1003–1010

    Article  Google Scholar 

  65. Xia Y, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153–184

    Article  Google Scholar 

  66. Resnick DJ, Sreenivasan S et al (2005) Step & flash imprint lithography. Mater Today 8:34–42

    Article  Google Scholar 

  67. Koh W-G, Revzin A et al (2002) Poly (ethylene glycol) hydrogel microstructures encapsulating living cells. Langmuir 18:2459–2462

    Article  Google Scholar 

  68. Chou SY, Krauss PR et al (1995) Imprint of sub-25 nm vias and trenches in polymers. Appl Phys Lett 67:3114–3116

    Article  Google Scholar 

  69. Chou SY, Krauss PR et al (1996) 25-Nanometer resolution. Science 272:85–87

    Article  Google Scholar 

  70. Bacher W, Bade K et al (1998) Fabrication of LIGA mold inserts. Microsyst Technol 4:117–119

    Article  Google Scholar 

  71. Colburn M, Grot A et al (2001) Patterning nonflat substrates with a low pressure, room temperature, imprint lithography process. J Vac Sci Technol B 19:2162–2172

    Article  Google Scholar 

  72. Haisma J, Verheijen M et al (1996) Mold-assisted nanolithography: a process for reliable pattern replication. J Vac Sci Technol B 14:4124–4128

    Article  Google Scholar 

  73. Caldorera-Moore M, Kang MK et al (2011) Swelling behavior of nanoscale, shape-and size-specific, hydrogel particles fabricated using imprint lithography. Soft Matter 7:2879–2887

    Article  Google Scholar 

  74. Glangchai LC, Caldorera-Moore M et al (2008) Nanoimprint lithography based fabrication of shape-specific, enzymatically-triggered smart nanoparticles. J Control Release 125:263–272

    Article  Google Scholar 

  75. Bender M, Otto M et al (2000) Fabrication of nanostructures using a UV-based imprint technique. Microelectron Eng 53:233–236

    Article  Google Scholar 

  76. Gale MT (1997) Replication techniques for diffractive optical elements. Microelectron Eng 34:321–339

    Article  Google Scholar 

  77. Bender, M., Otto, M., et al. (2000) Fabrication of nanostructures using a UV-based imprint technique. Microelectronic Engineering 53:233-236

    Google Scholar 

  78. Gale, M. T. (1997) Replication techniques for diffractive optical elements. Microelectronic Engineering 34:321-339

    Google Scholar 

  79. Mikos AG, Lyman MD et al (1994) Wetting of poly (l-lactic acid) and poly (dl-lactic-co-glycolic acid) foams for tissue culture. Biomaterials 15:55–58

    Article  Google Scholar 

  80. Anderson JR, Chiu DT et al (2000) Fabrication of microfluidic systems in poly (dimethylsiloxane). Electrophoresis 21:27–40

    Article  Google Scholar 

  81. Folch A, Jo B-H et al (2000) Microfabricated elastomeric stencils for micropatterning cell cultures. J Biomed Mater Res 52:346–353

    Article  Google Scholar 

  82. Chiu DT, Jeon NL et al (2000) Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems. Proc Natl Acad Sci 97:2408–2413

    Article  Google Scholar 

  83. Borenstein JT, Terai H et al (2002) Microfabrication technology for vascularized tissue engineering. Biomed Microdevices 4:167–175

    Article  Google Scholar 

  84. Nuttelman CR, Henry SM et al (2002) Synthesis and characterization of photocrosslinkable, degradable poly (vinyl alcohol)-based tissue engineering scaffolds. Biomaterials 23:3617–3626

    Article  Google Scholar 

  85. Hersel U, Dahmen C et al (2003) RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24:4385–4415

    Article  Google Scholar 

  86. Liu Tsang V, Bhatia SN (2004) Three-dimensional tissue fabrication. Adv Drug Deliv Rev 56:1635–1647

    Article  Google Scholar 

  87. Peppas N, Bures P et al (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46

    Article  Google Scholar 

  88. Mann BK, Gobin AS et al (2001) Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials 22:3045–3051

    Article  Google Scholar 

  89. Elisseeff J, McIntosh W et al (2000) Photoencapsulation of chondrocytes in poly (ethylene oxide)-based semi-interpenetrating networks. J Biomed Mater Res 51:164–171

    Article  Google Scholar 

  90. Bryant SJ, Anseth KS (2002) Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly (ethylene glycol) hydrogels. J Biomed Mater Res 59:63–72

    Article  Google Scholar 

  91. Hern DL, Hubbell JA (1998) Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. J Biomed Mater Res 39:266–276

    Article  Google Scholar 

  92. Behravesh E, Zygourakis K et al (2003) Adhesion and migration of marrow-derived osteoblasts on injectable in situ crosslinkable poly (propylene fumarate-co-ethylene glycol)-based hydrogels with a covalently linked RGDS peptide. J Biomed Mater Res A 65:260–270

    Article  Google Scholar 

  93. Schmedlen RH, Masters KS et al (2002) Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering. Biomaterials 23:4325–4332

    Article  Google Scholar 

  94. Kao WJ, Hubbell JA (1998) Murine macrophage behavior on peptide-grafted polyethyleneglycol-containing networks. Biotechnol Bioeng 59:2–9

    Article  Google Scholar 

  95. Koo LY, Irvine DJ et al (2002) Co-regulation of cell adhesion by nanoscale RGD organization and mechanical stimulus. J Cell Sci 115:1423–1433

    Google Scholar 

  96. Alsberg E, Anderson KW et al (2002) Engineering growing tissues. Proc Natl Acad Sci 99:12025–12030

    Article  Google Scholar 

  97. Sawhney AS, Pathak CP et al (1994) Optimization of photopolymerized bioerodible hydrogel properties for adhesion prevention. J Biomed Mater Res 28:831–838

    Article  Google Scholar 

  98. Liu VA, Bhatia SN (2002) Three-dimensional photopatterning of hydrogels containing living cells. Biomed Microdevices 4:257–266

    Article  Google Scholar 

  99. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351

    Article  Google Scholar 

  100. Sakiyama SE, Schense JC et al (1999) Incorporation of heparin-binding peptides into fibrin gels enhances neurite extension: an example of designer matrices in tissue engineering. FASEB J 13:2214–2224

    Google Scholar 

  101. Halstenberg S, Panitch A et al (2002) Biologically engineered protein-graft-poly (ethylene glycol) hydrogels: a cell adhesive and plasmin-degradable biosynthetic material for tissue repair. Biomacromolecules 3:710–723

    Article  Google Scholar 

  102. Lutolf M, Lauer-Fields J et al (2003) Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc Natl Acad Sci 100:5413–5418

    Article  Google Scholar 

  103. McDevitt TC, Angello JC et al (2002) In vitro generation of differentiated cardiac myofibers on micropatterned laminin surfaces. J Biomed Mater Res 60:472–479

    Article  Google Scholar 

  104. Khademhosseini A, Eng G et al (2007) Microfluidic patterning for fabrication of contractile cardiac organoids. Biomed Microdevices 9:149–157

    Article  Google Scholar 

  105. Chiu L, Janic K et al (2012) Engineering of oriented myocardium on three-dimensional micropatterned collagen-chitosan hydrogel. Int J Artif Organs 35:237–250

    Article  Google Scholar 

  106. Annabi N, Tsang K et al (2013) Highly elastic micropatterned hydrogel for engineering functional cardiac tissue. Adv Funct Mater 23:4950–4959

    Article  Google Scholar 

  107. Mordwinkin NM, Burridge PW et al (2013) A review of human pluripotent stem cell-derived cardiomyocytes for high-throughput drug discovery, cardiotoxicity screening, and publication standards. J Cardiovasc Transl Res 6:22–30

    Article  Google Scholar 

  108. Feinberg, A. W., Ripplinger, C. M., et al. (2013) Functional differences in engineered myocardium from embryonic stem cell-derived versus neonatal cardiomyocytes. Stem Cell Reports 1:387–96

    Google Scholar 

  109. Binah, O., Dolnikov, K., et al. (2007) Functional and developmental properties of human embryonic stem cells-derived cardiomyocytes. J Electrocardiol 40:S192–6

    Google Scholar 

  110. Sirish, P., Lopez, J. E., et al. (2012) MicroRNA profiling predicts a variance in the proliferative potential of cardiac progenitor cells derived from neonatal and adult murine hearts. J Mol Cell Cardiol 52:264–72

    Google Scholar 

  111. Kehat, I. (2002) High-Resolution Electrophysiological Assessment of Human Embryonic Stem Cell-Derived Cardiomyocytes: A Novel In Vitro Model for the Study of Conduction. Circulation Research 91:659–661

    Google Scholar 

  112. Dolnikov, K., Shilkrut, M., et al. (2006) Functional properties of human embryonic stem cell-derived cardiomyocytes: intracellular Ca2+ handling and the role of sarcoplasmic reticulum in the contraction. Stem Cells 24:236–45

    Google Scholar 

Download references

Acknowledgements

Artwork by Nicholas Bustamante.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jamie Newman or Mary Caldorera-Moore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Newman, J., Patel, N., Caldorera-Moore, M. (2016). Engineered Stem Cell-Based Scaffolds and Patches for Heart Disorders. In: Singh, A., Gaharwar, A. (eds) Microscale Technologies for Cell Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-20726-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20726-1_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20725-4

  • Online ISBN: 978-3-319-20726-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics