Skip to main content

Characterization of Pipe-Flow Turbulence and Mass Transfer in a Curved Swirling Flow Behind an Orifice

  • Conference paper
  • First Online:
  • 1267 Accesses

Part of the book series: ERCOFTAC Series ((ERCO,volume 23))

Abstract

This paper deals with the extraction of turbulent structure correlated with the wall mass transfer in a curved swirling pipe flow behind an orifice. The cross-sectional velocity field behind the orifice is measured by the Stereo Particle Image Velocimetry (SPIV) and the results are analyzed by the proper orthogonal decomposition (POD). The instantaneous velocity field shows the asymmetric vortex structure in the cross section due to the combined effect of the swirling flow and the secondary flow generated at the upstream elbow. The POD analysis indicates that the highly turbulent flow is generated on the upper left-hand side of the pipe in the lower POD modes suggesting the occurrence of high wall-thinning rate due to the mass transfer enhancement, while that of the higher modes do not show such asymmetry. This result suggests that the lower POD modes of the velocity field contribute to the non-axisymmetric pipe-wall thinning behind an orifice in a curved swirling flow.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. P. Aranyi, G. Janiga, K. Zahringer, D. Thevenin, Analysis of different POD methods for PIV; measurements in complex unsteady flows. Int. J. Heat Fluid Flow 43, 204–211 (2013)

    Article  Google Scholar 

  2. G. Berkooz, P. Holmes, J.L. Lumley, The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25, 539–575 (1993)

    Article  MathSciNet  Google Scholar 

  3. S. Bernero, H.E. Fielder, Application of particle image velocimetry and proper orthogonal decomposition on the study of a jet in counterflow. Exp. Fluids 29, S274–S281 (2000)

    Article  Google Scholar 

  4. R.B. Dooley, Flow-accelerated corrosion in fossil and combined cycle/HRSG plants. Power Plant Chem. 10, 68–89 (2008)

    Google Scholar 

  5. M. Escudier, Vortex breakdown, observations and explanations. Prog. Aerosp. Sci. 25, 189–229 (1988)

    Article  Google Scholar 

  6. N. Fujisawa, T. Yamagata, S. Kanno, A. Ito, T. Takano, The mechanism of asymmetric pipe-wall thinning behind an orifice by combined effect of swirling flow and orifice bias. Nucl. Eng. Des. 252, 19–26 (2012)

    Article  Google Scholar 

  7. N. Fujisawa, T. Yamagata, T. Takano, N. Kanatani, K. Iwata, A. Ishizuka, Experimental and numerical study on pipe-wall-thinning by swirling flow through complex pipeline geometry, in Proceedings of 12th Asian Symposium on Visualization, Tainan, Taiwan, ASV12-K3 (2013)

    Google Scholar 

  8. S. Funatani, N. Fujisawa, Simultaneous measurement of temperature and three velocity components in planar cross section by liquid-crystal thermometry combined with stereoscopic particle image velocimetry. Meas. Sci. Technol. 13, 1197–1205 (2002)

    Article  Google Scholar 

  9. L. Graftieaux, M. Michard, N. Grosjean, Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows. Meas. Sci. Technol. 12, 1422–1429 (2001)

    Article  MATH  Google Scholar 

  10. K.M. Hwang, T.E. Jin, K.H. Kim, Identification of relationship between local velocity components and local wall thinning inside carbon steel piping. J. Nucl. Sci. Technol. 46, 469–478 (2009)

    Article  Google Scholar 

  11. M. Kiuchi, N. Fujisawa, S. Tomimatsu, Performance of PIV system for combusting flow and its application to spray combustor model. J. Vis. 8, 269–276 (2005)

    Article  Google Scholar 

  12. J. Kostas, J. Soria, M.S. Chong, A comparison between snapshot POD analysis of PIV velocity and vorticity data. Exp. Fluids 38, 146–160 (2005)

    Article  Google Scholar 

  13. Z.-C. Liu, R.J. Adrian, T.J. Hanratty, Large-scale modes of turbulent channel flow: transport and structure. J. Fluid Mech. 448, 53–80 (2001)

    Article  MATH  Google Scholar 

  14. NISA, Secondary piping rupture accident at Mihama power station, unit 3, of the Kansai Electric Power Company, Inc. (2005)

    Google Scholar 

  15. M. Ohkubo, S. Kanno, T. Yamagata, T. Takano, N. Fujisawa, Occurrence of asymmetrical flow pattern behind an orifice in a circular pipe. J. Vis. 14, 15–17 (2011)

    Article  Google Scholar 

  16. M. Raffel, C. Willert, J. Kompenhans, Particle Image Velocimetry, vol. 174 (Springer, Heidelberg, 1998)

    Book  Google Scholar 

  17. F. Shan, A. Fujishiro, T. Tsuneyoshi, Y. Tsuji, Effects of flow field on the wall mass transfer rate behind a circular orifice in a round pipe. Int. J. Heat Mass Transf. 73, 542–550 (2014)

    Article  Google Scholar 

  18. S.M. Soloff, R.J. Adrian, Z.C. Liu, Distortion compensation for generalized stereoscopic particle image velocimetry. Meas. Sci. Technol. 8, 1441–1454 (1997)

    Article  Google Scholar 

  19. T. Sydberger, U. Lotz, Relation between mass transfer and corrosion in a turbulent pipe flow. J. Electrochem. Soc. 129, 276–283 (1982)

    Article  Google Scholar 

  20. T. Takano, T. Yamagata, Y. Sato, N. Fujisawa, Non-axisymmetric mass transfer phenomenon behind an orifice in a curved swirling flow. J. Flow Control Meas. Vis. 1, 1–5 (2013)

    Article  Google Scholar 

  21. Y. Utanohara, Y. Nagaya, A. Nakamura, M. Murase, Influence of local flow field on flow accelerated corrosion downstream from an orifice. J. Power Energy Syst. 6, 18–33 (2012)

    Article  MATH  Google Scholar 

  22. T. Yamagata, A. Ito, Y. Sato, N. Fujisawa, Experimental and numerical studies on mass transfer characteristics behind an orifice in a circular pipe for application to pipe-wall thinning. Exp. Therm. Fluid Sci. 52, 239–247 (2014)

    Article  Google Scholar 

  23. K. Yoneda, R. Morita, M. Satake, I. Inada, Quantitative evaluation of effective factors on flow accelerated corrosion (part 2), Modelling of mass transfer coefficient with hydraulic features at wall. CRIEPI Research Report, No. L07015 (2008) pp. 1–33

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Fujisawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Fujisawa, N., Watanabe, R., Yamagata, T., Kanatani, N. (2016). Characterization of Pipe-Flow Turbulence and Mass Transfer in a Curved Swirling Flow Behind an Orifice. In: Stanislas, M., Jimenez, J., Marusic, I. (eds) Progress in Wall Turbulence 2. ERCOFTAC Series, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-20388-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20388-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20387-4

  • Online ISBN: 978-3-319-20388-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics