Skip to main content

Machining and Machining Modeling of Metal Matrix Composites—A Review

  • Chapter

Part of the book series: Materials Forming, Machining and Tribology ((MFMT))

Abstract

This chapter reviews the most common machining processes used in metal matrix composites (MMCs), such as turning, milling, and drilling. Apart from the difficulties faced in each of these processes in the case of MMCs and some possible solutions, certain other important factors, such as tool wear mechanisms and the final surface quality, are discussed. Furthermore, the machinability of MMCs, in a number of different machining processes, is examined. Tapping, grinding, honing, sawing, and micro-machining are also considered. Additionally, the manufacturing of MMC products through nonconventional machining processes is discussed, as alternatives to the aforementioned processes. Finally, modeling of MMCs and their machining will be examined. The analysis will concentrate on the most popular methods used, namely finite elements method, molecular dynamics, and soft computing techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wilk W, Staniewicz-Brudnik B (2008) Abrasive machining of metal matrix composites. In: Proceedings of the 8th international conference advanced manufacturing operations, pp 373–379

    Google Scholar 

  2. Dandekar CR, Shin YC (2012) Modeling of machining of composite materials: a review. Int J Mach Tools Manuf 57:102–121

    Article  Google Scholar 

  3. Shin YC, Dandekar C (2012) Mechanics and modeling of chip formation in machining of MMC. In: Davim JP (ed) Machining of metal matrix composites. Springer, London

    Google Scholar 

  4. Muthukrishnan N, Davim JP (2009) Optimization of machining parameters of Al/SiC-MMC with ANOVA and ANN analysis. J Mater Process Technol 209:225–232

    Article  Google Scholar 

  5. Santha Kumar S, Thenappan V, Srinath G (2012) PCD cutting insert behavior on turning (Al-SiC15p) MMC. In: International conference on thermal, material and mechanical engineering, Singapore, pp 133–137

    Google Scholar 

  6. Durante S, Rutelli G, Rabezzana F (1997) Aluminum-based MMC machining with diamond-coated cutting tools. Surf Coat Technol 94–95(1):632–640

    Article  Google Scholar 

  7. Persson H (2001) Machining guidelines of Al/SiC particulate MMC. MMC-assess-thematic network, vol 6, MMC-Assess Consortium

    Google Scholar 

  8. Teti R (2002) Machining of composite materials. CIRP Ann Manuf Technol 51(2):611–634

    Article  Google Scholar 

  9. Thamizhmanii S, Hasan S (2008) Investigating flank wear and cutting force on hard steels by CBN cutting tool by turning. In: Proceedings of the world congress on engineering WCE 2008, London, UK

    Google Scholar 

  10. Weinert K, König W (1993) A consideration of tool wear mechanism when machining metal matrix composites (MMC). CIRP Ann Manuf Technol 42(1):95–98

    Google Scholar 

  11. Weinert K, Lange M, Schroer M (2000) Machining of light-metal matrix composites. In: Kainer KU (ed) Magnesium alloys and their applications. Wiley-VCH Verlag, Weinheim

    Google Scholar 

  12. Sikder S, Kishawy HA (2012) Analytical model for force prediction when machining metal matrix composite. Int J Mech Sci 59(1):95–103

    Article  Google Scholar 

  13. Ciftci I, Turker M, Seker U (2004) CBN cutting tool wear during machining of particulate reinforced MMCs. Wear 257:1041–1046

    Article  Google Scholar 

  14. Di Ilio A, Paoletti A (2012) Machinability aspects of metal matrix composites. In: Davim JP (ed) Machining of metal matrix composites. Springer, London

    Google Scholar 

  15. Biermann D (1995) Untersuchungen zum Drehen von Aluminiummatrix-Verbundwerkstoffen. Fortschrittberichte, Reihe 2, Nr 338, VDI Verlag Düsseldorf

    Google Scholar 

  16. Jani DV (2014) Machining of Sic—metal matrix composite (MMC) by polycrystalline diamond (PCD) tools and effect on quality of surface by changing machining parameters. Int J Sci Res Dev 2(7):106–108

    Google Scholar 

  17. Cook MW (1998) Machining MMC engineering components with polycrystalline diamond and diamond grinding. Mater Sci Technol 14:892–895

    Article  Google Scholar 

  18. Cronjäger L, Meister D (1992) Machining of fibre and particle-reinforced aluminium. CIRP Ann Manuf Technol 41(1):63–66

    Article  Google Scholar 

  19. El-Gallab M, Sklad M (1998) Machining of Al/SiC particulate metal-matrix composites: Part I: Tool performance. J Mater Process Technol 83(1–3):151–158

    Article  Google Scholar 

  20. Iuliano L, Settineri L, Gatto A (1998) High-speed turning experiments on metal matrix composites. Compos A 29A:1501–1509

    Article  Google Scholar 

  21. Chen P, Hoshi T (1992) High-performance machining of SiC whisker-reinforced aluminium composite by self-propelled rotary tool. CIRP Ann Manuf Technol 41(1):59–62

    Google Scholar 

  22. Coelho RT, Yamada S, LeRoux T, Aspinwall DK, Wis MLH (1993) Conventional machining of an aluminium based Sic reinforced metal matrix composite (MMC) alloy. In: Proceedings of the 30th MATADOR, Manchester, UK, pp 125–133

    Google Scholar 

  23. Looney LA, Monaghan JM, O’Reilly P, Taplin DMR (1992) The turning of an Al/SiC metal-matrix composite. J Mater Process Technol 33(4):453–468

    Article  Google Scholar 

  24. Sahin Y (2004) Preparation and some properties of SiC particle reinforced aluminium alloy composites. Mater Des 24(8):671–679

    Article  Google Scholar 

  25. Lin JT, Bhattacharyya D, Lane C (1995) Machinability of a silicon carbide reinforced aluminium metal matrix composite. Wear 181–183(Part2):883–888

    Google Scholar 

  26. Narutaki N (1996) Machining of MMC’s. VDI Berichte 1276:359–370

    Google Scholar 

  27. Tomac N, Tannessen K, Rasch FO (1992) Machinability of particulate aluminium matrix composites. CIRP Ann Manuf Technol 41(1):55–58

    Google Scholar 

  28. Songmene V, Balazinski M (2001) Machining of a graphitic SiC-reinforced aluminium metal matrix composites with diamond tools. In: CIRP international seminar on progress in innovative manufacturing engineering—PRIME 2001, Sestri Levante, pp 73–76

    Google Scholar 

  29. Tönshoff HK, Karpuschewski B, Winkler J, Podolsky C (1999) Manufacturing of magnesium by turning and burnishing operations. Advanced techology of plasticity, vol 1, Ecological manufacturing. In: Proceedings of the of the 6th ICTP, Nürnberg, pp 607–612

    Google Scholar 

  30. Weinert K, Buschka M, Niehues J, Schoberth A (2001) Spanende Bearbeitung von Al-Matrix-Verbundwerkstoffen. Materialwiss Werkstofftech 32(5):447–461

    Article  Google Scholar 

  31. Przestacki D (2014) Conventional and laser assisted machining of composite A359/20SiCp. Procedia CIRP 14:229–233

    Article  Google Scholar 

  32. Liu CS, Zhao B, Gao GF, Jiao F (2002) Research on the characteristics of the cutting force in the vibration cutting of a particle-reinforced metal matrix composites SiCp/Al. J Mater Process Technol 129(1–3):196–199

    Article  Google Scholar 

  33. Songmene V, Balazinski M (1999) Machinability of graphitic metal matrix composites as a function of reinforcing particles. CIRP Ann Manuf Technol 48(1):77–80

    Google Scholar 

  34. Chandrasekaran H, Johansson J (1996) On the behaviour of fibre/particle reinforced aluminium alloy matrix composites in milling and grinding. VDI Berichte 1276:463–478

    Google Scholar 

  35. Lane C (1992) The effect of different reinforcement on PCD tool life for aluminium Composites. Machining of composites materials. In: Proceedings of the ASM/TMS materials week symposium, Chicago, Illinois, pp 17–27

    Google Scholar 

  36. Lane C (1990) Machining characteristics of particulate-reinforced aluminum. In: Fabrication of particle reinforced metal composites, ASM, pp 195–201

    Google Scholar 

  37. Lane C, Finn M (1992) Observations on using CVD diamond in milling MMCs. In: Materials issues in machining and the physics of machining processes. TMS, pp 39–51

    Google Scholar 

  38. Coelho RT, Yamada S, Aspinwall DK, Wise MLH (1995) The application of polycrystalline diamond (PCD) tool materials when drilling and reaming aluminium based alloys including MMC. Int J Mach Tools Manuf 35(5):761–774

    Article  Google Scholar 

  39. Coelho RT, Aspinwall DK, Wise MLH (1994) Drilling and reaming aluminium-based metal matrix composites (MMC) using PCD tooling. In: Transactions of NAMRI/SME

    Google Scholar 

  40. Jawaid A, Barnes S, Ghadimzadeh SR (1992) Drilling of particulate aluminum silicon carbide metal matrix composites. In: Proceeding of the ASM materials workshop, Chicago, IL

    Google Scholar 

  41. Ricci WC (1987) Machining metal matrix composites. SME, MR87-827

    Google Scholar 

  42. Songmene V, Stephenson TF, Waner AEM (1997) Machinability of graphitic silicon carbide aluminum metal matrix composite GrA-Ni®. In: ASME international mechanical engineering congress and exposition, Dallas, Texas

    Book  Google Scholar 

  43. Tosun G, Muratoglu M (2004) The drilling of an Al/SiCp metal-matrix composites. Part I: Microstructure. Compos Sci Technol 64(2):299–308

    Article  Google Scholar 

  44. Basavarajappa S, Chandramohan G, Prabu M, Mukund K, Ashwin M (2007) Drilling of hybrid metal matrix composites-workpiece surface integrity. Int J Mach Tools Manuf 47:92–96

    Article  Google Scholar 

  45. Liu J, Li J, Xu C (2014) Interaction of the cutting tools and the ceramic-reinforced metal matrix composites during micro-machining: a review. CIRP J Manufact Sci Technol 7(2):55–70

    Article  Google Scholar 

  46. Venkatesh VC, Norizah R, Murugan VS, Mehrota PK, Ourdjini A, Hamidon M (2001) Microdrilling of composites. In: International conference on materials for advanced technology, symposium on advances on polymers and composites, Sun Tech City, Singapore

    Google Scholar 

  47. Monaghan J, O’Reilly P (1992) The drilling of an Al/SiC metal-matrix composite. J Mater Process Technol 33(4):469–480

    Article  Google Scholar 

  48. Yan BH, Tsai HC, Huang FY, Lee LC (2005) Examination of wire electrical discharge machining of Al2O3p/6061Al composites. Int J Mach Tools Manuf 45(3):251–259

    Article  Google Scholar 

  49. Pramanik A, Zhang LC, Arsecularatne JA (2007) An FEM investigation into the behavior of metal matrix composites: tool–particle interaction during orthogonal cutting. Int J Mach Tools Manuf 47:1497–1506

    Article  Google Scholar 

  50. Pramanik A (2014) Developments in the non-traditional machining of particle reinforced metal matrix composites. Int J Mach Tools Manuf 86:44–61

    Article  Google Scholar 

  51. Ho KH, Newman ST (2003) State of the art electrical discharge machining (EDM). Int J Mach Tools Manuf 43(13):1287–1300

    Article  Google Scholar 

  52. Ramulu M, Taya M (1989) EDM machinability of SiCw/Al composites. J Mater Sci 24(3):1103–1108

    Article  Google Scholar 

  53. Hocheng H, Lei WT, Hsu HS (1997) Preliminary study of material removal in electrical-discharge machining of SiC/Al. J Mater Process Technol 63:813–818

    Article  Google Scholar 

  54. Rozenek M, Kozak J, Dąbrowski L, Łubkowski K (2001) Electrical discharge machining characteristics of metal matrix composites. J Mater Process Technol 109:367–370

    Article  Google Scholar 

  55. Chicosz P, Karokzak P (2008) Sinking EDM of aluminum matrix composites. Mater Sci Poland 26(3):547–554

    Google Scholar 

  56. Shanmugam DK, Chen FL, Siores E, Brandt M (2002) Comparative study of jetting machining technologies over laser machining technology for cutting composite materials. Compos Struct 57(1–4):289–296

    Article  Google Scholar 

  57. Savrun E, Taya M (1988) Surface characterization of SiC whisker/2124 aluminium and Al2O3 composites machined by abrasive water jet. J Mater Sci 23(4):1453–1458

    Article  Google Scholar 

  58. Hamatani G, Ramulu M (1990) Machinability of high temperature composites by abrasive waterjet. J Eng Mater Technol 112(4):381–386

    Article  Google Scholar 

  59. Hashish M (1995) Water jet machining of advanced composites. Mater Manuf Processes 10(6):1129–1152

    Article  Google Scholar 

  60. Dubey AK, Yadava V (2008) Laser beam machining—a review. Int J Mach Tools Manuf 48(6):609–628

    Article  Google Scholar 

  61. Wang AH, Xu HG, Yang P, Zhang XL, Xie CS (2007) Nd:YAG laser butt welding of a 12 vol.% SiC particulate-reinforced magnesium alloy composite. Mater Lett 61(19–20):4023–4026

    Article  Google Scholar 

  62. Dahotre NB, McCay TD, McCay MH (1989) Laser processing of a SiC/Al-alloy metal matrix composite. J Appl Phys 65:5072–5077

    Article  Google Scholar 

  63. Müller F, Monaghan J (2000) Non-conventional machining of particle reinforced metal matrix composite. Int J Mach Tools Manuf 40(9):1351–1366

    Article  Google Scholar 

  64. Kozak J (1998) Mathematical models for computer simulation of electrochemical machining process. J Mater Process Technol 76(1–3):170–175

    Article  Google Scholar 

  65. Bhattacharyya B, Munda J, Malapati M (2004) Advancement in electrochemical micro-machining. Int J Mach Tools Manuf 44(15):1577–1589

    Article  Google Scholar 

  66. Senthilkumar C, Ganesan G, Karthikeyan R (2009) Study of electrochemical machining characteristics of Al/SiCp composites. Int J Adv Manuf Technol 43(3–4):256–263

    Article  Google Scholar 

  67. Sankar M, Gnanavelbabu A, Rajkumar K (2014) Effect of reinforcement particles on the abrasive assisted electrochemical machining of aluminium-boron carbide-graphite composite. Procedia Engineering 97:381–389

    Article  Google Scholar 

  68. Thoe TB, Aspinwall DK, Wise MLH (1998) Review on ultrasonic machining. Int J Mach Tools Manuf 38(4):239–255

    Article  Google Scholar 

  69. Zhong ZW, Lin G (2006) Ultrasonic assisted turning of an aluminium-based metal matrix composite reinforced with SiC particles. Int J Adv Manuf Technol 27(11–12):1077–1081

    Article  Google Scholar 

  70. Nath C, Rahman M, Neo KS (2009) A study on ultrasonic elliptical vibration cutting of tungsten carbide. J Mater Process Technol 209(9):4459–4464

    Article  Google Scholar 

  71. Hung NP, Loh NL, Xu ZM (1996) Cumulative tool wear in machining metal matrix composites Part II: Machinability. J Mater Process Technol 58(1):114–120

    Article  Google Scholar 

  72. Kishawy HA, Kannan S, Balazinski M (2005) Analytical modeling of tool wear progression during turning particulate reinforced metal matrix composites. CIRP Ann Manuf Technol 54(1):55–58

    Article  Google Scholar 

  73. Li X, Seah WKH (2001) Tool wear acceleration in relation to workpiece reinforcement percentage in cutting of metal matrix composites. Wear 247(2):161–171

    Article  Google Scholar 

  74. Hung NP, Zhong CH (1996) Cumulative tool wear in machining metal matrix composites Part I: Modelling. J Mater Process Technol 58(1):109–113

    Article  Google Scholar 

  75. Hung NP, Boey FYC, Khor KA, Phua YS, Lee HF (1996) Machinability of aluminium alloys reinforced with silicon carbide particulates. J Mater Process Technol 56(1–4):966–977

    Article  Google Scholar 

  76. Lin JT, Bhattcharyya D, Lane C (1995) Machinabilty of a silicon reinforced aluminium metal matrix composites. Wear 181–183(2):883–888

    Article  Google Scholar 

  77. Hung NP, Boey FYC, Khor KA, Oh CA, Lee HF (1995) Machinability of cast and powder formed aluminium alloys reinforced with SiC particles. J Mater Process Technol 48(1–4):291–297

    Article  Google Scholar 

  78. Kishawy HA, Kannan S, Balazinski M (2004) An Energy based analytic force model for orthogonal cutting of metal matrix composites. CIRP Ann Manuf Technol 53(1):91–94

    Article  Google Scholar 

  79. Pramanik A, Zhang LC, Arsecularatne JA (2006) Prediction of cutting forces in machining of metal matrix composites. Int J Mach Tools Manuf 46(14):1795–1803

    Article  Google Scholar 

  80. Dabade UA, Dapkekar D, Joshi SS (2009) Modeling of chip-tool interface friction to predict cutting forces in machining of Al/SiCp particles. Int J Mach Tools Manuf 49(9):690–700

    Article  Google Scholar 

  81. Dabade UA, Joshi SS (2009) Analysis of chip formation mechanism in machining of Al/SiCp metal matrix composites. J Mater Process Technol 209(10):4704–4710

    Article  Google Scholar 

  82. Pramanik A, Zhang LC, Arsecularatne JA (2008) Machining of metal matrix composites: effect of ceramic particles on residual stress, surface roughness and chip formation. Int J Mach Tools Manuf 48(15):1613–1625

    Article  Google Scholar 

  83. Ramamurty U, Zok FW, Leckie FA, Deve HE (1997) Strength variability in alumina fiber-reinforced aluminium matrix composites. Acta Mater 45(11):4603–4613

    Article  Google Scholar 

  84. Ramamurty U (2005) Assessment of load transfer characteristics of a fiber-reinforced titanium-matrix composite. Compos Sci Technol 65(11–12):1815–1825

    Article  Google Scholar 

  85. Okabe T, Takeda N, Kamoshida Y, Shimizu M, Curtin WA (2001) A 3D shear-lag model considering micro-damage and statistical strength prediction of unidirectional fiber-reinforced composites. Compos Sci Technol 61:1773–1787

    Article  Google Scholar 

  86. Xia Z, Curtin WA, Okabe T (2002) Green’s function vs shear lag models of damage and failure in fiber composites. Compos Sci Technol 62(10–11):1279–1288

    Article  Google Scholar 

  87. Ibnabdeljalil M, Curtin WA (1997) Strength and reliability of fiber-reinforced composites: localised load-sharing and assosiated size effects. Int J Solids Struct 34(21):2649–2688

    Article  MATH  Google Scholar 

  88. Roatta A, Bolmaro RE (1997) An Eshelby inclusion based model for the study of stresses and plastic strain localization in metal matrix composites I: general formulation and its application to round particles. Mater Sci Eng A 229(1–2):182–191

    Article  Google Scholar 

  89. Roatta A, Bolmaro RE (1997) An Eshelby inclusion based model for the study of stresses and plastic strain localization in MMC II: Fiber reinforcement and lamellar inclusions. Mater Sci Eng A 229(1–2):192–202

    Article  Google Scholar 

  90. Roatta A, Turner PA, Bertinetti MA, Bolmaro RE (1997) An iterative approach to mechanical properties of MMCs at the onset of plastic deformation. Mater Sci Eng A 229(1–2):203–218

    Article  Google Scholar 

  91. Bruno G, Fernandez R (2007) The dependence of the Eshelby model predictions on the microstructure of MMC. Acta Mater 55(4):1267–1274

    Article  Google Scholar 

  92. Tevatia A, Srivastava SK (2015) Modified shear lag theory based fatigue crack growth life prediction model for short-fiber reinforced metal matrix composites. Int J Fatigue 70:123–129

    Article  Google Scholar 

  93. Deve HE (1997) Compressive strength of continuous fiber reinforced aluminium matrix composites. Acta Mater 45(12):5041–5046

    Article  Google Scholar 

  94. Zhang H, Daehn GS, Wagoner RH (1991) Simulation of the plastic response of whisker reinforced metal matrix composites under thermal cycling conditions. Scr Metall Mater 25(10):2285–2290

    Article  Google Scholar 

  95. Dutta I, Sims JD, Seigenthaler DM (1993) An analytical study of residual stress effects on uniaxial deformation of whisker reinforced metal-matrix composites. Acta Metall Mater 41(3):885–908

    Article  Google Scholar 

  96. Lee WJ, Son JH, Kang NH, Park IM, Park YH (2009) Finite-element analysis of deformation behaviors in random whisker reinforced composite. Scripta Mater 61(6):580–583

    Article  Google Scholar 

  97. Aghdam MM, Smith DJ, Pavier MJ (2000) Finite element micromechanical modelling of yield and collapse behavior of metal matrix composites. J Mech Phys Solids 48(3):499–528

    Article  MATH  Google Scholar 

  98. Chan KC, Cheung CF, Ramesh MV, Lee WB, To S (2001) A theoretical and experimental investigation of surface generation in diamond turning of an Al6061/ SiCp metal matrix composite. Int J Mech Sci 43:2047–2068

    Article  MATH  Google Scholar 

  99. Ramesh MV, Chan KC, Lee WB, Cheung CF (2001) Finite-element analysis of diamond turning of aluminium matrix composites. Compos Sci Technol 61(10):1449–1456

    Article  Google Scholar 

  100. Pramanik A, Zhang LC, Arsecularatne JA (2008) Deformation mechanisms of MMCs under indentation. Compos Sci Technol 68:1304–1312

    Article  Google Scholar 

  101. Miserez A, Rossoll A, Mortensen A (2004) Investigation of crack-tip plasticity in high volume fraction particulate metal matrix composites. Eng Fract Mech 71:2385–2406

    Article  Google Scholar 

  102. Mishnaevsky L Jr, Brondsted P (2009) Micromechanical modeling of damage and fracture of unidirectional fiber reinforced composites: a review. Comput Mater Sci 44(4):1351–1359

    Article  Google Scholar 

  103. Haj-Ali R, Aboudi J (2010) Formulation of the high-fidelity generalized method of cells with arbitrary cell geometry for refined micromechanics and damage in composites. Int J Solids Struct 47(25–26):3447–3461

    Article  MATH  Google Scholar 

  104. Harper LT, Qian C, Turner TA, Li S, Warrior NA (2012) Representative volume elements for discontinuous carbon fiber composites-Part I: Boundary conditions. Compos Sci Technol 72(2):225–234

    Article  Google Scholar 

  105. Dlouhy A, Eggeler G, Merk N (1995) A micromechanical model for creep in short fibre reinforced aluminium alloys. Acta Metall Mater 43(2):535–550

    Article  Google Scholar 

  106. Xu Q, Tao W, Qu S, Yang Q (2015) A cohesive zone model for the elevated temperature interfacial debonding and frictional sliding behavior. Compos Sci Technol 110:45–52

    Article  Google Scholar 

  107. Di Ilio A, Paoletti A, D’Addona D (2009) Characterization and modelling of the grinding process of metal matrix composites. CIRP Ann Manuf Technol 58:291–294

    Article  Google Scholar 

  108. El-Gallab M, Sklad M (2000) Machining of Al/SiC particulate metal matrix composites Part III: Comprehensive tool wear models. J Mater Process Technol 101:10–20

    Article  Google Scholar 

  109. Rao B, Dandekar CR, Shin YC (2011) An experimental and numerical study on the face milling of Ti–6Al–4 V alloy: tool performance and surface integrity. J Mater Process Technol 211(2):294–304

    Article  Google Scholar 

  110. Zhou L, Wang Y, Ma ZY, Yu XL (2014) Finite element and experimental studies of the formation mechanism of edge defects during machining of SiCp/Al composites. Int J Mach Tools Manuf 84:9–16

    Article  Google Scholar 

  111. Dandekar CR, Shin YC (2013) Multi-scale modeling to predict sub-surface damage applied to laser-assisted machining of a particulate reinforced metal matrix composite. J Mater Process Technol 213(2):153–160

    Article  Google Scholar 

  112. El- Gallab MS, Sklad MP (2004) Machining of aluminium/silicon carbide particulate metal matrix composites Part. IV Residual stresses in the machined workpiece. J Mater Process Technol 152:23–34

    Article  Google Scholar 

  113. Prabu SB, Karunamoorthy L, Kandasami GS (2004) A finite element analysis study of micromechanical interfacial characteristics of metal matrix composites. J Mater Process Technol 153–154:992–997

    Article  Google Scholar 

  114. Mahdi M, Zhang L (2001) A finite element model for the orthogonal cutting of fiber-reinforced composite materials. J Mater Process Technol 113:373–377

    Article  Google Scholar 

  115. Rao GVG, Mahajan P, Bhatnagar N (2007) Micro-mechanical modeling of machining of FRP composites-cutting force analysis. Compos Sci Technol 67(3–4):579–593

    Article  Google Scholar 

  116. Mkaddem A, Demirci I, El Mansori M (2008) A micro-macro combined approach using FEM for modelling of machining of FRP composites: cutting force analysis. Compos Sci Technol 68(15–16):3123–3127

    Article  Google Scholar 

  117. Peng Z, Fuguo L (2010) Micro-macro unified analysis of flow behavior of particle-reinforced metal matrix composites. Chin J Aeronaut 23:252–259

    Article  Google Scholar 

  118. Kouznetsova V, Brekelmans WAM, Baaijens FPT (2001) An approach to micro-macro modelling of heterogeneous materials. Comput Mech 27:37–48

    Article  MATH  Google Scholar 

  119. Orozco CE (1997) Computational aspect of modeling complex microstructure composites using GMC. Compos B Eng 28(1–2):167–175

    Article  Google Scholar 

  120. Pindera M-J, Bednarcyk BA (1997) An efficient implementation of the GMC for unidirectional, multi-phased composites with complex microstructures. NASA Contract, Report 202350

    Google Scholar 

  121. Pahr DH, Arnold SM (2002) The applicability of the generalized method of cells for analysing discontinuously reinforced composites. Compos B Eng 33(2):153–170

    Article  Google Scholar 

  122. Haj-Ali R, Aboudi J (2009) Nonlinear micromechanical formulation of the high fidelity generalized method of cells. Int J Solids Struct 46(13):2577–2592

    Article  MATH  Google Scholar 

  123. Harper LT, Qian C, Turner TA, Li S, Warrior NA (2012) Representative Volume Elements for discontinuous carbon fiber composites-Part II: Determining the critical size. Compos Sci Technol 72(2):204–210

    Article  Google Scholar 

  124. Dong M, Schmauder S (1996) Modelling of metal matrix composites by a self-consistent embedded cell model. Acta Mater 44(6):2465–2478

    Article  Google Scholar 

  125. Dong M, Schmauder S (1996) Transverse mechanical behavior of fiber reinforced composites-FE modelling with embedded cell models. Comput Mater Sci 5:53–66

    Article  Google Scholar 

  126. Bohm HJ, Eckschlager A, Han W (2002) Multi-inclusion unit cell models for metal matrix composites with randomly oriented discontinuous reinforcements. Comput Mater Sci 25(1–2):42–53

    Article  Google Scholar 

  127. Aghdam MM, Dezhsetan A (2005) Micromechanics based analysis of randomly distributed fiber reinforced metal matrix composite using simplified unit cell method. Compos Struct 71(3–4):327–332

    Article  Google Scholar 

  128. Doghri I, Tinel L (2005) Micromechanical modeling and computation of elasto-plastic material reinforced with distributed-orientation fibers. Int J Plast 21(10):1919–1940

    Article  MATH  Google Scholar 

  129. Doghri I, Tinel L (2006) Micromechanics of inelastic composites with misaligned inclusions: numerical treatment of orientation. Comput Methods Appl Mech Eng 195(13–16):1387–1406

    Article  MathSciNet  MATH  Google Scholar 

  130. Dong M, Schmauder S, Bidlingmaier T, Wanner A (1997) Prediction of the mechanical behavior of short fiber reinforced MMCs by combined cell models. Comput Mater Sci 9(1–2):121–133

    Article  Google Scholar 

  131. Mammoli AA, Bush MB (1993) A boundary element analysis of metal matrix composite materials. Int J Numer Meth Eng 36(14):2415–2433

    Article  MATH  Google Scholar 

  132. Mammoli AA, Bush MB (1995) Effects of reinforcement geometry on the elastic and plastic behavior of metal matrix composites. Acta Metall Mater 43(10):3743–3754

    Article  Google Scholar 

  133. Chatterjee J, Henry DP, Ma F, Banerjee PK (2008) An efficient BEM formulation for three-dimensional steady-state heat conduction analysis of composites. Int J Heat Mass Transf 51(5–6):1439–1452

    Article  MATH  Google Scholar 

  134. Liu YJ, Xu N (2000) Modeling of interface cracks in fiber-reinforced composites with the presence of interphases using the boundary element method. Mech Mater 32:769–783

    Article  Google Scholar 

  135. Chen X, Papathanasiou TD (2004) Interface stress distributions in transversely loaded continuous fiber composite: parallel computation in multi-fiber RVEs using the BEM. Compos Sci Technol 64(9):1101–1114

    Article  Google Scholar 

  136. Kaminski M (2012) Stochastic boundary element method analysis of the interface defects in composite materials. Compos Struct 94(2):394–402

    Article  Google Scholar 

  137. Goldberg RK, Hopkins DA (1995) Application of the boundary elements method to the micromechanical analysis of composite materials. Comput Struct 56(5):721–731

    Article  Google Scholar 

  138. Knight MG, Wrobel LC, Henshall JL (2003) Micromechanical response of fibre-reinforced materials using the boundary element technique. Compos Struct 62(3–4):341–352

    Article  Google Scholar 

  139. Banerjee PK, Henry DP (1992) Elastic analysis of three-dimensional solids with fiber inclusions by BEM. Int J Solids Struct 29(20):2423–2440

    Article  MATH  Google Scholar 

  140. Saheb N, Iqbal Z, Khalil A, Hakeem AS, Al Aqeeli N, Laoui T, Al-Qutub A, Kirchner R (2012) Spark plasma sintering of metals and metal matrix nanocomposites: a review. J Nanomater 2012, Article ID 983470

    Google Scholar 

  141. Dongare AM, Zhigilei LV, Rajendran AM, LaMattina B (2009) Interatomic potentials for atomic scale modelling of metal-matrix ceramic particle reinforced nanocomposites. Compos B Eng 40(6):461–467

    Article  Google Scholar 

  142. Dongare AM, LaMattina B (2011) Atomic scale study of deformation and failure mechanisms in ceramic-reinforced metal-matrix composites. In: Hashim A (ed) Advances in nanocomposite technology. InTech

    Google Scholar 

  143. Dandekar CR, Shin YC (2011) Effect of porosity on the interface behavior of an Al2O3—aluminum composite: a molecular dynamics study. Compos Sci Technol 71(3):350–356

    Article  Google Scholar 

  144. Mei H, Liu LS, Lai X, Zhai PC (2013) Analysis of mechanical properties of nanocrystalline Al + α-Al2O3 composites using molecular dynamics simulation. J Phys Conf Ser 419 012049 FGM 2012

    Google Scholar 

  145. Dandekar CR, Shin YC (2011) Molecular dynamics based cohesive zone law for describing Al-SiC interface mechanics. Compos A Appl Sci Manuf 42(4):355–363

    Article  Google Scholar 

  146. Tomar V, Zhou M (2007) Analyses of tensile deformation of nanocrystalline α-Fe2O3 + fcc-Al composites using molecular dynamics simulations. J Mech Phys Solids 55:1053–1085

    Article  MATH  Google Scholar 

  147. Berner A, Mundim KC, Ellis DE, Dorfman S, Fuks D, Evenhaim R (1999) Microstructure of Cu-C interface in Cu-based metal matrix composite. Sens Actuators A 74(1–3):86–90

    Article  Google Scholar 

  148. Lidorikis E, Bachlechner ME, Kalia RK, Nakano A, Voyiadjis GZ, Vashishta P (2000) Coupling of length scales: hybrid molecular dynamics and finite element approach for multiscale nanodevice simulations. In: MRS Proceedings, vol 653, pp Z9.3.1–Z9.3.6

    Google Scholar 

  149. Nakano A, Bachlechner ME, Kalia RK, Lidorikis E, Vashishta P, Voyiadjis GZ, Campbell TJ, Ogata S, Shimojo F (2001) Multiscale simulation of nanosystems. Comput Sci Eng 56–66

    Google Scholar 

  150. Ogata S, Lidorikis E, Shimojo F, Nakano A, Vashishta P, Kalia RK (2001) Hybrid finite-element/molecular-dynamics/electron-density-functional approach to materials simulation on parallel computers. Comput Phys Commun 138:143–154

    Article  MATH  Google Scholar 

  151. Aly MF, Ng E, Veldhuis SC, Elbestawi MA (2006) Prediction of cutting forces in the micro-machining of silicon using a ‘‘hybrid molecular dynamic-finite element analysis’’ force model. Int J Mach Tools Manuf 46:1727–1739

    Article  Google Scholar 

  152. Tian Y, Shin YC (2007) Multiscale finite element modeling of silicon nitride ceramics undergoing laser-assisted machining. Trans ASME J Manuf Sci Eng 129(2):287–295

    Article  Google Scholar 

  153. Lin JT, Bhattachrayya D, Kecman V (2003) Multiple regression and neural networks analyses in composites machining. Compos Sci Technol 63(3–4):539–548

    Article  Google Scholar 

  154. Davim JP (2003) Design of optimization of cutting parameters for turning metal matrix composites based on the orthogonal arrays. J Mater Process Technol 132(1–3):340–344

    Article  Google Scholar 

  155. Koker R, Altinkok N, Demir A (2007) Neural network based prediction of mechanical properties of particulate reinforced metal matrix composites using various training algorithms. Mater Des 28(2):616–627

    Article  Google Scholar 

  156. Shabani MO, Mazahery A (2012) Artificial intelligence in numerical modeling of nano sized ceramic particulates reinforced metal matrix composites. Appl Math Model 36(11):5455–5465

    Article  Google Scholar 

  157. Shabani MO, Mazahery A, Rahimipour MR, Razavi M (2012) FEM and ANN investigation of A356 composites reinforced with B4C particulates. J King Saud Univ Eng Sci 24(2):107–113

    Google Scholar 

  158. Ozyurek D, Kalyon A, Yildirim M, Tuncay T, Ciftci I (2014) Experimental investigation and prediction of wear properties of Al/SiC metal matrix composites produced by thixomoulding method using artificial neural networks. Mater Des 63:270–277

    Article  Google Scholar 

  159. Cheung CF, Chan KC, Lee WB (2003) Surface characterization in ultra-precision machining of Al/SiC metal matrix composites using data dependent systems analysis. J Mater Process Technol 140(1–3):141–146

    Article  Google Scholar 

  160. Sahoo AK, Pradhan S, Rout AK (2013) Development and machinability assessment in turning Al/SiCp-metal matrix composites with multilayer coated carbide inset using Taguchi and statistical techniques. Arch Civil Mech Eng 13(1):27–35

    Article  Google Scholar 

  161. Gopalakannan S, Senthilvelan T, Ranganathan S (2012) Modeling and optimization of EDM process parameters on machining of Al7075-B4C MMC using RSM. Proc Eng 38:685–690

    Article  Google Scholar 

  162. Gopalakannan S, Senthilvelan T (2013) Application of response surface method on machining of Al-SiC nano-composites. Measurement 46(8):2705–2715

    Article  Google Scholar 

  163. Lakshminarayanan AK, Balasubramanian V (2009) Comparison of RSM with ANN in predicting tensile strength of friction stir welded AA7039 aluminium alloy joints. Trans Nonferr Met Soc China 19(1):9–18

    Article  Google Scholar 

  164. Bayhan M, Önel K (2010) Optimization of reinforcement content and sliding distance for AlSi7 Mg/SiCp composites using response surface methodology. Mater Des 31(6):3015–3022

    Article  Google Scholar 

  165. Shandilya P, Jain PK, Jain NK (2013) RSM and ANN modelling approaches for predicting average cutting speed during WEDM of SiCp/6061 Al MMC. Proc Eng 64:767–774

    Article  Google Scholar 

  166. Kiran TS, Kumar MP, Basavarajappa S, Viswanatha BM (2014) Dry sliding wear behavior of heat treated hybrid metal matrix composites using Taguchi techniques. Mater Des 63:294–304

    Article  Google Scholar 

  167. Chaudhary G, Kumar M, Verma S, Srivastav A (2014) Optimization of drilling parameters of hybrid metal matrix composites using response surface methodology. Proc Mater Sci 6:229–237

    Article  Google Scholar 

  168. Joardar H, Das NS, Sutradhar G, Singh S (2014) Application of response surface methodology for determining cutting force model in turning of LM6/SiCp metal matrix composites. Measurement 47:452–464

    Article  Google Scholar 

  169. Kumar R, Chauhan S (2015) Study on surface roughness measurement for turning of Al 7075/ 10/ SiCp and Al 7075 hybrid composites by using response surface methodology (RSM) and artificial neural networking (ANN). Measurement 65:166–180

    Article  Google Scholar 

  170. Pandit SM (1977) Stochastic linearization by data dependent systems. J Dyn Syst Meas Contr 99(4):221–226

    Article  MATH  Google Scholar 

  171. Pandit SM, Mehta NP (1988) Data dependent systems approach to modal analysis Part 1: Theory. J Sound Vib 122(3):413–422

    Article  Google Scholar 

  172. Pandit SM, Jacobson EN (1988) Data dependent systems approach to modal analysis, Part II: Application to structural modification of a disc-brake rotor. J Sound Vib 122(3):423–432

    Article  Google Scholar 

  173. Subhash G, Loukus JE, Pandit SM (2002) Application of data dependent systems approach for evaluation of fracture modes during a single-grit scratching. Mech Mater 34(1):25–42

    Article  Google Scholar 

  174. Roy SS (2006) Design of genetic-fuzzy expert system for predicting surface finish in ultra-precision diamond turning of metal matrix composites. J Mater Process Technnol 173(3):337–344

    Article  Google Scholar 

  175. Rajmohan T, Palanikumar K, Prakash S (2013) Grey-fuzzy algorithm to optimize machining parameters in drilling of hybrid metal matrix composites. Compos B Eng 50:297–308

    Article  Google Scholar 

  176. Suresh P, Marimuthu K, Ranganathan S, Rajmohan T (2014) Optimization of machining parameters in turning of Al-SiC-Gr hybrid metal matrix composites using grey-fuzzy algorithm. Trans Nonferr Met Soc China 24(9):2805–2814

    Article  Google Scholar 

  177. Muthukrishnan N, Davim JP (2009) Optimization of machining parameters of Al/SiC MMC with ANOVA and ANN analysis. J Mater Process Technol 209(1):225–232

    Article  Google Scholar 

  178. Kumar A, Mahapatra MM, Jha PK (2013) Modeling the abrasive wear characteristics of in-situ synthesized Al–4.5 %Cu/TiC composites. Wear 306(1–2):170–178

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelos P. Markopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Markopoulos, A.P., Pressas, I.S., Papantoniou, I.G., Karkalos, N.E., Davim, J.P. (2015). Machining and Machining Modeling of Metal Matrix Composites—A Review. In: Davim, J.P. (eds) Modern Manufacturing Engineering. Materials Forming, Machining and Tribology. Springer, Cham. https://doi.org/10.1007/978-3-319-20152-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20152-8_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20151-1

  • Online ISBN: 978-3-319-20152-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics