Skip to main content

Computational Modeling of Neuronal Dysfunction at Molecular Level Validates the Role of Single Neurons in Circuit Functions in Cerebellum Granular Layer

  • Chapter
  • First Online:
  • 1188 Accesses

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 14))

Abstract

Using mathematical modelling, we attempted to reconstruct the information transmission at the granular layer of the cerebellum, a circuit whose functions and dysfunctions remain yet to be explored in detail. Information transmission at the Mossy Fiber (MF)—Granule cell (GrC) synaptic relay is crucial to understand mechanisms of signal coding in the cerebellum and related impacts of connectivity mechanisms. Using biophysically detailed multi-compartmental models, simple spiking neurons we reconstructed granular layer micro-circuitry and estimated both single neuron behaviour and network activity in terms of center-surround patterns, as observed during sensory and tactile stimulation. The chapter also includes local field potential reconstructions to show plasticity mechanisms at the molecular level is reflected at the network activity level, indicating network LFP in the granular layer is a regulated activity signal arising from the underlying granule cells and the feed-forward inhibition from the Golgi cells. The role of selective inhibition by Golgi cells for coincidence detection is presented. Exploring the EPSP-spike complex in granular neurons revealed potential mechanisms for sparse recoding in cerebellum and quantification of information encoding in individual neurons of the cerebellar granular layer. We also look into two specific forms of neuronal dysfunction with ataxia-like behaviour in knockout mice models and in NMDAR-related autism. While network activity was severely affected, the amplitude of damage is critical of the mechanisms at the cellular or molecular level. The study further enhances our understanding of specific coding geometries in the cerebellum and spatio-temporal processing in a primary circuit of the cerebellum.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ito M. Mechanisms of motor learning in the cerebellum. Brain Res. 2000;886(1–2):237–45.

    Article  CAS  PubMed  Google Scholar 

  2. Tyrrell T, Willshaw D. Cerebellar cortex: its simulation and the relevance of Marr’s theory. Philos Trans R Soc Lond B Biol Sci [Internet]. 1992;336(1277):239–57. http://www.ncbi.nlm.nih.gov/pubmed/1353267.

    Article  CAS  PubMed  Google Scholar 

  3. Albus J. A theory of cerebellar function. Math Biosci. 1971;10:25–61.

    Article  Google Scholar 

  4. D’Angelo E, Koekkoek SKE, Lombardo P, Solinas S, Ros E, Garrido J, Schonewille M, De Zeeuw CI. Timing in the cerebellum: oscillations and resonance in the granular layer. Neuroscience [Internet]. 2009;162(3):805–15. http://www.ncbi.nlm.nih.gov/pubmed/19409229.

    Article  PubMed  Google Scholar 

  5. Raymond JL, Lisberger SG, Mauk MD. The cerebellum: a neuronal learning machine? Science [Internet]. 1996;272(5265):1126–31. http://www.ncbi.nlm.nih.gov/pubmed/8638157.

    Article  CAS  PubMed  Google Scholar 

  6. Nemenman I, Bialek W, de Ruyter van Steveninck R. Entropy and information in neural spike trains: progress on the sampling problem. Phys Rev E [Internet]. 2004;69(5):1–6. http://link.aps.org/doi/10.1103/PhysRevE.69.056111.

    Article  Google Scholar 

  7. Bialek W, Rieke F, de Ruyter van Steveninck R, Warland D. Reading a neural code. Science (80-) [Internet]. 1991;252(5014):1854–7. http://www.sciencemag.org/content/252/5014/1854.short.

    Article  CAS  PubMed  Google Scholar 

  8. Strong S, Koberle R, de Ruyter van Steveninck R, Bialek W. Entropy and information in neural spike trains. Phys Rev Lett [Internet]. 1998;80(1):197–200. http://link.aps.org/doi/10.1103/PhysRevLett.80.197.

    Article  CAS  Google Scholar 

  9. Shew WL, Yang H, Yu S, Roy R, Plenz D. Information capacity and transmission are maximized in balanced cortical networks with neuronal avalanches, J. Neurosci. 31;2011. pp. 55–63.

    Google Scholar 

  10. Mapelli J, Gandolfi D, D’Angelo E. High-pass filtering and dynamic gain regulation enhance vertical bursts transmission along the mossy fiber pathway of cerebellum. Front Cell Neurosci [Internet]. 2010;4:14. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2889686&tool=pmcentrez&rendertype=abstract.

    PubMed Central  PubMed  Google Scholar 

  11. D’Angelo E. Neural circuits of the cerebellum: hypothesis for function. J Integr Neurosci [Internet]. 2011;10(3):317–52. http://www.ncbi.nlm.nih.gov/pubmed/21960306.

  12. Parasuram H, Nair B, Naldi G, Angelo ED, Diwakar S, D’Angelo E. A modeling based study on the origin and nature of evoked post-synaptic local field potentials in granular layer. J Physiol Paris [Internet]. Elsevier Ltd. 2011;105(1–3):71–82. http://www.ncbi.nlm.nih.gov/pubmed/21843640.

    Article  PubMed  Google Scholar 

  13. D’Angelo E, Mazzarello P, Prestori F, Mapelli J, Solinas S, Lombardo P, Cesana E, Gandolfi D, Congi L. The cerebellar network: from structure to function and dynamics. Brain Res Rev [Internet]. Elsevier B.V. 2011;66(1–2):5–15. http://www.ncbi.nlm.nih.gov/pubmed/20950649.

    Article  PubMed  Google Scholar 

  14. Cerminara NL, Apps R. Behavioural significance of cerebellar modules. Cerebellum. 2011;10:484–94.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Marr D. A theory of cerebellar cortex. J Physiol. 1969;202(2):437–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. D’Angelo E, De Zeeuw CI. Timing and plasticity in the cerebellum: focus on the granular layer. Trends Neurosci. 2009;32(1):30–40.

    Article  PubMed  Google Scholar 

  17. Kandel ER, Schwartz JH, Jessell TM. Principles of Neural Science. New York: McGraw-Hill; 2000.

    Google Scholar 

  18. Ito M. The modifiable neuronal network of the cerebellum. Jpn J Physiol. 1984;34(5):781–92.

    Article  CAS  PubMed  Google Scholar 

  19. Purves D, Augustine GJ, Fitzpatrick D, Hall WC, LaMantia AS, McNamara JO Williams MS, Editors. Neuroscience, Third Edition. Sunderland: Sinauer Associates Inc; 2004.

    Google Scholar 

  20. Philipona D, O’Regan JK, Nadal J-P. Is there something out there? Inferring space from sensorimotor dependencies. Neural Comput [Internet]. 2003;15(9):2029–49. http://dx.doi.org/10.1162/089976603322297278.

    Article  CAS  PubMed  Google Scholar 

  21. Evans GJO. Synaptic signalling in cerebellar plasticity. Biol Cell. 2007;99:363–78.

    Article  CAS  PubMed  Google Scholar 

  22. D’Angelo E. The critical role of Golgi cells in regulating spatio-temporal integration and plasticity at the cerebellum input stage. Front Neurosci. 2008;2:35–46.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Roggeri L, Rivieccio B, Rossi P, D’Angelo E. Tactile stimulation evokes long-term synaptic plasticity in the granular layer of cerebellum. J Neurosci [Internet]. 2008;28(25):6354–9. http://www.ncbi.nlm.nih.gov/pubmed/18562605.

    Article  CAS  PubMed  Google Scholar 

  24. Nicoll RA. Expression mechanisms underlying long-term potentiation: a postsynaptic view. Philos Trans R Soc Lond B Biol Sci. 2003;358:721–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Nieus T, Sola E, Mapelli J, Saftenku E, Rossi P, D’Angelo E. LTP regulates burst initiation and frequency at mossy fiber-granule cell synapses of rat cerebellum: experimental observations and theoretical predictions. J Neurophysiol [Internet]. 2006;95(2):686–99. http://dx.doi.org/10.1152/jn.00696.2005.

    Article  PubMed  Google Scholar 

  26. Sola E, Prestori F, Rossi P, Taglietti V, D’Angelo E. Increased neurotransmitter release during long-term potentiation at mossy fibre-granule cell synapses in rat cerebellum. J Physiol [Internet]. 2004;557(Pt 3):843–61. http://dx.doi.org/10.1113/jphysiol.2003.060285.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. D’Errico A, Prestori F, D’Angelo E. Differential induction of bidirectional long-term changes in neurotransmitter release by frequency-coded patterns at the cerebellar input. J Physiol [Internet]. 2009;587(Pt 24):5843–57. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2808544&tool=pmcentrez&rendertype=abstract.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Foffani G, Moxon KA. Studying the role of spike timing in ensembles of neurons. Conference Proceedings 2nd Int IEEE EMBS Conference Neural Engineering 2005. Arlington, VA: IEEE; 2005. pp. 206–8.

    Google Scholar 

  29. Zucker RS, Regehr WG. Short-term synaptic plasticity. Annu Rev Physiol [Internet]. 2002;64:355–405. http://www.ncbi.nlm.nih.gov/pubmed/11826273.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang W, Linden DJ. The other side of the engram: experience-driven changes in neuronal intrinsic excitability. Nat Rev Neurosci. 2003;4:885–900.

    Article  CAS  PubMed  Google Scholar 

  31. Arleo A, Nieus T, Bezzi M, D’Errico A, D’Angelo E, Coenen OJ-MD. How synaptic release probability shapes neuronal transmission: information-theoretic analysis in a cerebellar granule cell. Neural Comput [Internet]. 2010;22(8):2031–58. http://www.mitpressjournals.org/doi/abs/10.1162/NECO_a_00006-Arleo.

    Article  PubMed  Google Scholar 

  32. D’Angelo E, Filippi G De, Rossi P, Taglietti V. Ionic mechanism of electroresponsiveness in cerebellar granule cells implicates the action of a persistent sodium current. J Neurophysiol [Internet]. 1998;80(2):493–503. http://jn.physiology.org/content/80/2/493.long.

    PubMed  Google Scholar 

  33. Diwakar S, Magistretti J, Goldfarb M, Naldi G, D’Angelo E. Axonal na + channels ensure fast spike activation and back-propagation in cerebellar granule cells. J Neurophysiol [Internet]. 2009;101(2):519–32. http://dx.doi.org/10.1152/jn.90382.2008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. D’Angelo E, Nieus T, Maffei A, Armano S, Rossi P, Taglietti V, Fontana A, Naldi G. Theta-frequency bursting and resonance in cerebellar granule cells: experimental evidence and modeling of a slow k+ -dependent mechanism. J Neurosci. 2001;21(3):759–70.

    PubMed  Google Scholar 

  35. Goldfarb M, Schoorlemmer J, Williams A, Diwakar S, Wang Q, Huang X, Giza J, Tchetchik D, Kelley K, Vega A, Matthews G, Rossi P, Ornitz DM, D’Angelo E. Fibroblast growth factor homologous factors control neuronal excitability through modulation of voltage-gated sodium channels. Neuron [Internet]. 2007;55(3):449–63. http://dx.doi.org/10.1016/j.neuron.2007.07.006.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Diwakar S, Lombardo P, Solinas S, Naldi G, D’Angelo E. Local field potential modeling predicts dense activation in cerebellar granule cells clusters under LTP and LTD control. PLoS One [Internet]. 2011;6(7):e21928. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3139583&tool=pmcentrez&rendertype=abstract.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. D’Angelo E, Solinas S, Garrido J, Casellato C, Pedrocchi A, Mapelli J, Gandolfi D, Prestori F. Realistic modeling of neurons and networks: towards brain simulation. Funct Neurol [Internet]. 2013;28(3):153–66. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3812748&tool=pmcentrez&rendertype=abstract.

    PubMed Central  PubMed  Google Scholar 

  38. Ito M. Questions in modeling the cerebellum. J Theor Biol. 1982;99(1):81–6.

    Article  CAS  PubMed  Google Scholar 

  39. Eccles JC, Ito M, Szentagothai J. The cerebellum as a neuronal machine. Berlin: Springer-Verlag; 1967.

    Book  Google Scholar 

  40. Hamori J, Somogyi J. Formation of new synaptic contacts by Purkinje axon collaterals in the granular layer of deafferented cerebellar cortex of adult rat. Acta Biol Hung. 1983;34(2–3):163–76.

    CAS  PubMed  Google Scholar 

  41. Hamori J, Somogyi J. Differentiation of cerebellar mossy fiber synapses in the rat: a quantitative electron microscope study. J Comp Neurol [Internet]. 1983;220(4):365–77. http://dx.doi.org/10.1002/cne.902200402.

    Article  CAS  PubMed  Google Scholar 

  42. Vos BP, Maex R, Volny-Luraghi A, Schutter E De. Parallel fibers synchronize spontaneous activity in cerebellar Golgi cells. J Neurosci. 1999;19(11):RC6.

    CAS  PubMed  Google Scholar 

  43. Solinas S, Forti L, Cesana E, Mapelli J, Schutter E De, D'Angelo E. Fast-reset of pacemaking and theta-frequency resonance patterns in cerebellar Golgi cells: simulations of their impact in vivo. Front Cell Neurosci. 2007;1:4.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Solinas S, Forti L, Cesana E, Mapelli J, Schutter E De, D'Angelo E. Computational reconstruction of pacemaking and intrinsic electroresponsiveness in cerebellar golgi cells. Front Cell Neurosci. 2007;1:2.

    Article  PubMed Central  PubMed  Google Scholar 

  45. D’Angelo E, Solinas S, Mapelli J, Gandolfi D, Mapelli L, Prestori F. The cerebellar Golgi cell and spatiotemporal organization of granular layer activity. Front Neural Circuits [Internet]. 2013;7:93. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3656346&tool=pmcentrez&rendertype=abstract.

    PubMed Central  PubMed  Google Scholar 

  46. Forti L, Cesana E, Mapelli J, D’Angelo E. Ionic mechanisms of autorhythmic firing in rat cerebellar Golgi cells. J Physiol [Internet]. 2006;574(Pt 3):711–29. http://dx.doi.org/10.1113/jphysiol.2006.110858.

    Article  CAS  PubMed  Google Scholar 

  47. Hines ML, Carnevale NT. NEURON: a tool for neuroscientists. Neuroscientist. 2001;7(2):123–35.

    Article  CAS  PubMed  Google Scholar 

  48. Medini C, Nair B, D’Angelo E, Naldi G, Diwakar S. Modeling spike-train processing in the cerebellum granular layer and changes in plasticity reveal single neuron effects in neural ensembles. Comput Intell Neurosci [Internet]. 2012;2012:1–17. http://www.hindawi.com/journals/cin/2012/359529/.

    Article  Google Scholar 

  49. Rossi P, Sola E, Taglietti V, Borchardt T, Steigerwald F, Utvik JK, Ottersen OP, Köhr G, D’Angelo E. NMDA receptor 2 (NR2) C-terminal control of NR open probability regulates synaptic transmission and plasticity at a cerebellar synapse. J Neurosci. 2002;22(22):9687–97.

    CAS  PubMed  Google Scholar 

  50. Mapelli L, Rossi P, Nieus T, D’Angelo E. Tonic activation of GABAB receptors reduces release probability at inhibitory connections in the cerebellar glomerulus. J Neurophysiol [Internet]. 2009;101(6):3089–99. http://www.ncbi.nlm.nih.gov/pubmed/19339456.

    Article  CAS  PubMed  Google Scholar 

  51. Lorenz A, Deutschmann M, Ahlfeld J, Prix C, Koch A, Smits R, Fodde R, Kretzschmar HA, Schüller U. Severe alterations of cerebellar cortical development after constitutive activation of Wnt signaling in granule neuron precursors. Mol Cell Biol [Internet]. 2011;31(16):3326–38. http://mcb.asm.org/content/31/16/3326.long.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Andreescu CE, Prestori F, Brandalise F, D’Errico A, De Jeu MTG, Rossi P, Botta L, Kohr G, Perin P, D’Angelo E, De Zeeuw CI. NR2A subunit of the N-methyl D-aspartate receptors are required for potentiation at the mossy fiber to granule cell synapse and vestibulo-cerebellar motor learning. Neuroscience [Internet]. 2011;176:274–83. http://www.ncbi.nlm.nih.gov/pubmed/21185357.

    Article  CAS  PubMed  Google Scholar 

  53. Gandolfi D, Lombardo P, Mapelli J, Solinas S, D’Angelo E. Theta-frequency resonance at the cerebellum input stage improves spike timing on the millisecond time-scale. Front Neural Circuits [Internet]. Frontiers. 2013;7:64. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3622075&tool=pmcentrez&rendertype=abstract.

    Article  PubMed Central  PubMed  Google Scholar 

  54. D’Angelo E, Rossi P, Gall D, Prestori F, Nieus T, Maffei A, Sola E. Long-term potentiation of synaptic transmission at the mossy fiber-granule cell relay of cerebellum. Prog Brain Res [Internet]. 2005;148:69–80. http://dx.doi.org/10.1016/S0079-6123(04)48007-8.

    Article  PubMed  Google Scholar 

  55. Solinas S, Nieus T, D’Angelo E. A realistic large-scale model of the cerebellum granular layer predicts circuit spatio-temporal filtering properties. Front Cell Neurosci [Internet]. 2010;4:12. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2876868&tool=pmcentrez&rendertype=abstract.

    PubMed Central  PubMed  Google Scholar 

  56. Naud R, Marcille N, Clopath C, Gerstner W. Firing patterns in the adaptive exponential integrate-and-fire model. Biol Cybern [Internet]. 2008;99(4–5):335–47. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2798047&tool=pmcentrez&rendertype=abstract.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Clopath C, Jolivet R, Rauch A, Luscher H-R, Gerstner W. Predicting neuronal activity with simple models of the threshold type: adaptive exponential integrate-and-fire model with two compartments. Neurocomputing. 2007;70(10–12):1668–73.

    Article  Google Scholar 

  58. Fourcaud-Trocmé N, Hansel D, van Vreeswijk C, Brunel N. How spike generation mechanisms determine the neuronal response to fluctuating inputs. J Neurosc [Internet]. 2003;23(37):11628–40. http://www.ncbi.nlm.nih.gov/pubmed/14684865.

    Google Scholar 

  59. Mapelli L, Solinas S, D’Angelo E. Integration and regulation of glomerular inhibition in the cerebellar granular layer circuit. Front Cell Neurosci [Internet]. Frontiers. 2014;8:55. http://www.frontiersin.org/Journal/10.3389/fncel.2014.00055/abstract.

    PubMed Central  PubMed  Google Scholar 

  60. Chadderton P, Margrie TW, Häusser M. Integration of quanta in cerebellar granule cells during sensory processing. Nature [Internet]. 2004;428(6985):856–60. http://dx.doi.org/10.1038/nature02442.

    Article  CAS  PubMed  Google Scholar 

  61. Abdulmanaph N, James P, Nair B, Diwakar S. Characterizing information transmission in cerebellar granule neuron. 2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA) [Internet]. IEEE; 2010. 1487–94. http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=5645277.

  62. Pettersen KH, Hagen E, Einevoll GT. Estimation of population firing rates and current source densities from laminar electrode recordings. J Comput Neurosci [Internet]. 2008;24(3):291–313. http://www.ncbi.nlm.nih.gov/pubmed/17926125.

    Article  PubMed  Google Scholar 

  63. Mapelli J, D’Angelo E. The spatial organization of long-term synaptic plasticity at the input stage of cerebellum. J Neurosci [Internet]. 2007;27(6):1285–96. http://www.ncbi.nlm.nih.gov/pubmed/17287503.

    Article  CAS  PubMed  Google Scholar 

  64. Toyoizumi T, Aihara K, Amari S. Fisher information for spike-based population decoding. Phys Rev Lett. 2006;97(9):98102.

    Article  Google Scholar 

  65. Gold C, Henze Da, Koch C, Buzsáki G, Buzsaki G. On the origin of the extracellular action potential waveform: a modeling study. J Neurophysiol [Internet]. 2006;95(5):3113–28. http://www.ncbi.nlm.nih.gov/pubmed/16467426.

    Article  CAS  PubMed  Google Scholar 

  66. Holt GR, Koch C. Electrical interactions via the extracellular potential near cell bodies. J Comput Neurosci [Internet]. 1999;6(2):169–84. http://www.ncbi.nlm.nih.gov/pubmed/10333161.

    Article  CAS  PubMed  Google Scholar 

  67. Linden H, Tetzlaff T, Potjans TC, Pettersen KH, Grün S, Diesmann M, Einevoll GT. Modeling the spatial reach of the LFP. Neuron. 2011;72:859–72.

    Article  CAS  PubMed  Google Scholar 

  68. Rancz EA, Ishikawa T, Duguid I, Chadderton P, Mahon S, Häusser M. High-fidelity transmission of sensory information by single cerebellar mossy fibre boutons. Nature [Internet]. 2007;450(7173):1245–8. http://www.ncbi.nlm.nih.gov/pubmed/18097412.

    Article  CAS  PubMed  Google Scholar 

  69. Jörntell H, Ekerot C-F. Properties of somatosensory synaptic integration in cerebellar granule cells in vivo. J Neurosci [Internet]. 2006;26(45):11786–97. http://www.ncbi.nlm.nih.gov/pubmed/17093099.

    Article  PubMed  Google Scholar 

  70. Gandolfi D, Pozzi P, Tognolina M, Chirico G, Mapelli J, D’Angelo E. The spatiotemporal organization of cerebellar network activity resolved by two-photon imaging of multiple single neurons. Front Cell Neurosci [Internet]. 2014;8:92. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3995049&tool=pmcentrez&rendertype=abstract.

    PubMed Central  PubMed  Google Scholar 

  71. Mapelli J, Gandolfi D, D’Angelo E. Combinatorial responses controlled by synaptic inhibition in the cerebellum granular layer. J Neurophysiol [Internet]. 2010;103(1):250–61. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=536482&tool=pmcentrez&rendertype=abstract.

    Article  PubMed  Google Scholar 

  72. Mapelli J, D’Angelo E. The spatial organization of long-term synaptic plasticity at the input stage of cerebellum. J Neurosci [Internet]. 2007;27(6):1285–96. http://www.ncbi.nlm.nih.gov/pubmed/17287503.

    Article  CAS  PubMed  Google Scholar 

  73. D’Errico A, Prestori F, D’Angelo E. Differential induction of bidirectional long-term changes in neurotransmitter release by frequency-coded patterns at the cerebellar input. J Physiol [Internet]. 2009;587(Pt 24):5843–57. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2808544&tool=pmcentrez&rendertype=abstract.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Maffei A, Prestori F, Rossi P, Taglietti V, D’Angelo E. Presynaptic current changes at the mossy fiber-granule cell synapse of cerebellum during LTP. J Neurophysiol. 2002;88(2):627–38.

    PubMed  Google Scholar 

  75. Parasuram H, Nair B, Naldi G, Angelo ED, Diwakar S, D’Angelo E. A modeling based study on the origin and nature of evoked post-synaptic local field potentials in granular layer. J Physiol Paris [Internet]. Elsevier Ltd. 2011;105(1–3):71–82. http://www.ncbi.nlm.nih.gov/pubmed/21843640.

    Article  PubMed  Google Scholar 

  76. Mitzdorf U. Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol Rev [Internet]. 1985;65(1):37–100. http://www.ncbi.nlm.nih.gov/pubmed/3880898.

    CAS  PubMed  Google Scholar 

  77. Einevoll GT, Kayser C, Logothetis NK, Panzeri S. Modelling and analysis of local field potentials for studying the function of cortical circuits. Nat Rev Neurosci [Internet]. 2013;14(11):770–85. http://www.ncbi.nlm.nih.gov/pubmed/24135696.

    Article  CAS  PubMed  Google Scholar 

  78. D’Angelo E, Nieus T, Maffei A, Armano S, Rossi P, Taglietti V, Fontana A, Naldi G. Theta-frequency bursting and resonance in cerebellar granule cells: experimental evidence and modeling of a slow k+-dependent mechanism. J Neurosci. 2001;21(3):759–70.

    PubMed  Google Scholar 

  79. Ito M. Cerebellar circuitry as a neuronal machine. Prog Neurobiol [Internet]. 2006;78(3–5):272–303. http://dx.doi.org/10.1016/j.pneurobio.2006.02.006.

    Article  PubMed  Google Scholar 

  80. Gerstner W, Kistler WM. Spiking neuron models: single neurons, populations, plasticity [Internet]. Cambridge University Press. 2002. http://icwww.epfl.ch/~gerstner/SPNM/SPNM.html.

  81. Bengtsson F, Jörntell H, Jo H. Sensory transmission in cerebellar granule cells relies on similarly coded mossy fiber inputs. Proc Natl Acad Sci U S A. 2009;106(7):2389–94. doi:10.1073/pnas.0808428106.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. D’Angelo E, Filippi G De, Rossi P, Taglietti V. Synaptic excitation of individual rat cerebellar granule cells in situ: evidence for the role of NMDA receptors. J Physiol. 1995;484(Pt 2):397–413.

    Article  PubMed Central  PubMed  Google Scholar 

  83. D’Angelo E, Mazzarello P, Prestori F, Mapelli J, Solinas S, Lombardo P, Cesana E, Gandolfi D, Congi L. The cerebellar network: from structure to function and dynamics. Brain Res Rev [Internet]. Elsevier B.V. 2011;66(1–2):5–15. http://www.ncbi.nlm.nih.gov/pubmed/20950649.

    Article  PubMed  Google Scholar 

  84. D’Angelo E, Solinas S, Garrido J, Casellato C, Pedrocchi A, Mapelli J, Gandolfi D, Prestori F. Realistic modeling of neurons and networks: towards brain simulation. Funct Neurol [Internet]. 2013;28(3):153–66. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3812748&tool=pmcentrez&rendertype=abstract.

    PubMed Central  PubMed  Google Scholar 

  85. Bidoret C, Ayon A, Barbour B, Casado M. Presynaptic NR2A-containing NMDA receptors implement a high-pass filter synaptic plasticity rule. Proc Natl Acad Sci U S A [Internet]. 2009;106(33):14126–31. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2729031&tool=pmcentrez&rendertype=abstract.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Yang Y, Herrup K. Loss of neuronal cell cycle control in ataxia-telangiectasia: a unified disease mechanism. J Neurosci [Internet]. 2005;25(10):2522–9. http://www.ncbi.nlm.nih.gov/pubmed/15758161.

    Article  CAS  PubMed  Google Scholar 

  87. Schweighofer N, Doya K, Lay F. Unsupervised learning of granule cell sparse codes enhances cerebellar adaptive control. Neuroscience. 2001;103(1):35–50.

    Article  CAS  PubMed  Google Scholar 

  88. Marr D A theory of cerebellar cortex. This information is current as of August 14, 2007. This is the final published version of this article; it is available at: This version of the article may not be posted on a public website for 12 months after publication u. 2007.

    Google Scholar 

  89. D’Angelo E, Casali S. Seeking a unified framework for cerebellar function and dysfunction: from circuit operations to cognition. Front Neural Circuits [Internet]. 2012;6:116. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3541516&tool=pmcentrez&rendertype=abstract.

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work derives direction and ideas from the Chancellor of Amrita University, Sri Mata Amritanandamayi Devi. SD would like to acknowledge Egidio D’Angelo and Sergio Solinas of University of Pavia, Thierry Nieus of IIT Genova and Bipin Nair, Krishnashree Achuthan, Harilal Parasuram, Chaitanya Medini, Nidheesh Melethadathil, Manjusha Nair, Asha Vijayan, Afila Yoosef, Chaitanya Kumar, Sandeep Bodda of Amrita University for their work and support in making this manuscript. This work is supported by Grants SR/CSI/49/2010, SR/CSI/60/2011 and Indo-Italy POC 2012–2014 from DST and BT/PR5142/MED/30/764/2012 from DBT, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyam Diwakar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Diwakar, S. (2015). Computational Modeling of Neuronal Dysfunction at Molecular Level Validates the Role of Single Neurons in Circuit Functions in Cerebellum Granular Layer. In: Bhattacharya, B., Chowdhury, F. (eds) Validating Neuro-Computational Models of Neurological and Psychiatric Disorders. Springer Series in Computational Neuroscience, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-20037-8_8

Download citation

Publish with us

Policies and ethics