Skip to main content

Keypoint Transfer Segmentation

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9123))

Included in the following conference series:

Abstract

We present an image segmentation method that transfers label maps of entire organs from the training images to the novel image to be segmented. The transfer is based on sparse correspondences between keypoints that represent automatically identified distinctive image locations. Our segmentation algorithm consists of three steps: (i) keypoint matching, (ii) voting-based keypoint labeling, and (iii) keypoint-based probabilistic transfer of organ label maps. We introduce generative models for the inference of keypoint labels and for image segmentation, where keypoint matches are treated as a latent random variable and are marginalized out as part of the algorithm. We report segmentation results for abdominal organs in whole-body CT and in contrast-enhanced CT images. The accuracy of our method compares favorably to common multi-atlas segmentation while offering a speed-up of about three orders of magnitude. Furthermore, keypoint transfer requires no training phase or registration to an atlas. The algorithm’s robustness enables the segmentation of scans with highly variable field-of-view.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12(1), 26–41 (2008)

    Article  Google Scholar 

  2. Ballard, D.: Generalizing the hough transform to detect arbitrary shapes. Pattern Recogn. 13(2), 111–122 (1981)

    Article  MATH  Google Scholar 

  3. Coup, P., Manjn, J.V., Fonov, V., Pruessner, J., Robles, M., Collins, D.L.: Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation. NeuroImage 54(2), 940–954 (2011)

    Article  Google Scholar 

  4. Criminisi, A., Robertson, D., Konukoglu, E., Shotton, J., Pathak, S., White, S., Siddiqui, K.: Regression forests for efficient anatomy detection and localization in computed tomography scans. Med. Image Anal. 17(8), 1293–1303 (2013)

    Article  Google Scholar 

  5. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  6. Goksel, O., Gass, T., Szekely, G.: Segmentation and landmark localization based on multiple atlases. In: Proceedings of the VISCERAL Challenge at ISBI, CEUR Workshop Proceedings, pp. 37–43, Beijing, China (2014)

    Google Scholar 

  7. Heckemann, R., Hajnal, J., Aljabar, P., Rueckert, D., Hammers, A.: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. NeuroImage 33(1), 115–126 (2006)

    Article  Google Scholar 

  8. Iglesias, J.E., Konukoglu, E., Montillo, A., Tu, Z., Criminisi, A.: Combining generative and discriminative models for semantic segmentation of CT scans via active learning. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 25–36. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Jiménezdel Toro, O., Müller, H.: Hierarchical multi-structure segmentation guided by anatomical correlations. In: Proceedings of the VISCERAL Challenge at ISBI, CEUR Workshop Proceedings, pp. 32–36, Beijing, China (2014)

    Google Scholar 

  10. Langs, G., Hanbury, A., Menze, B., Müller, H.: VISCERAL: towards large data in medical imaging — challenges and directions. In: Greenspan, H., Müller, H., Syeda-Mahmood, T. (eds.) MCBR-CDS 2012. LNCS, vol. 7723, pp. 92–98. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Lay, N., Birkbeck, N., Zhang, J., Zhou, S.K.: Rapid Multi-organ Segmentation Using Context Integration and Discriminative Models. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 450–462. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  12. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  13. Montillo, A., Shotton, J., Winn, J., Iglesias, J.E., Metaxas, D., Criminisi, A.: Entangled decision forests and their application for semantic segmentation of CT images. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 184–196. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Potesil, V., Kadir, T., Brady, S.: Learning new parts for landmark localization in whole-body CT scans. IEEE Trans. Med. Imaging 33(4), 836–848 (2014)

    Article  Google Scholar 

  15. Rohlfing, T., Brandt, R., Menzel, R., Maurer, C., et al.: Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. NeuroImage 21(4), 1428–1442 (2004)

    Article  Google Scholar 

  16. Sabuncu, M., Yeo, B., Van Leemput, K., Fischl, B., Golland, P.: A generative model for image segmentation based on label fusion. IEEE Trans. Med. Imaging 29, 1714–1729 (2010)

    Article  Google Scholar 

  17. Toews, M., Wells III, W., Collins, D.L., Arbel, T.: Feature-based morphometry: discovering group-related anatomical patterns. NeuroImage 49(3), 2318–2327 (2010)

    Article  Google Scholar 

  18. Toews, M., Wells III, W.M.: Efficient and robust model-to-image alignment using 3D scale-invariant features. Med. Image Anal. 17(3), 271–282 (2013)

    Article  Google Scholar 

  19. Jiménez del Toro, O., et al.: VISCERAL - VISual Concept Extraction challenge in RAdioLogy. In: Goksel, O. (ed.) Proceedings of the VISCERAL Challenge at ISBI, No. 1194 in CEUR Workshop Proceedings, pp. 6–15 (2014)

    Google Scholar 

  20. Zheng, Y., Georgescu, B., Comaniciu, D.: Marginal space learning for efficient detection of 2D/3D anatomical structures in medical images. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds.) IPMI 2009. LNCS, vol. 5636, pp. 411–422. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Humboldt foundation, the National Alliance for Medical Image Computing (U54-EB005149), the NeuroImaging Analysis Center (P41-EB015902), the National Center for Image Guided Therapy (P41-EB015898), and the Wistron Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Wachinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Wachinger, C., Toews, M., Langs, G., Wells, W., Golland, P. (2015). Keypoint Transfer Segmentation. In: Ourselin, S., Alexander, D., Westin, CF., Cardoso, M. (eds) Information Processing in Medical Imaging. IPMI 2015. Lecture Notes in Computer Science(), vol 9123. Springer, Cham. https://doi.org/10.1007/978-3-319-19992-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19992-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19991-7

  • Online ISBN: 978-3-319-19992-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics