Skip to main content

A Unifying Framework for Spatial and Temporal Diffusion in Diffusion MRI

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9123))

Abstract

We propose a novel framework to simultaneously represent the diffusion-weighted MRI (dMRI) signal over diffusion times, gradient strengths and gradient directions. Current frameworks such as the 3D Simple Harmonic Oscillator Reconstruction and Estimation basis (3D-SHORE) only represent the signal over the spatial domain, leaving the temporal dependency as a fixed parameter. However, microstructure-focused techniques such as Axcaliber and ActiveAx provide evidence of the importance of sampling the dMRI space over diffusion time. Up to now there exists no generalized framework that simultaneously models the dependence of the dMRI signal in space and time. We use a functional basis to fit the 3D+t spatio-temporal dMRI signal, similarly to the 3D-SHORE basis in three dimensional ’q-space’. The lowest order term in this expansion contains an isotropic diffusion tensor that characterizes the Gaussian displacement distribution, multiplied by a negative exponential. We regularize the signal fitting by minimizing the norm of the analytic Laplacian of the basis, and validate our technique on synthetic data generated using the theoretical model proposed by Callaghan et al. We show that our method is robust to noise and can accurately describe the restricted spatio-temporal signal decay originating from tissue models such as cylindrical pores. From the fitting we can then estimate the axon radius distribution parameters along any direction using approaches similar to AxCaliber. We also apply our method on real data from an ActiveAx acquisition. Overall, our approach allows one to represent the complete 3D+t dMRI signal, which should prove helpful in understanding normal and pathologic nervous tissue.

Rutger Fick and Demian Wassermann contributed equally to this work. This work was partially supported by the MOSIFAH ANR (France) Grant.Marco Pizzolato thanks Olea Medical and the PACA Regional council for support.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Assaf, Y., Katzir, T.B., Yovel, Y., Basser, P.: AxCaliber: a method for measuring axon diameter distribution from diffusion MRI. Mag. Reson. Med. 59(6), 1347–1354 (2008)

    Article  Google Scholar 

  2. Stejskal, E.: Use of spin echoes in a pulsed magnetic field gradient to study anisotropic, restricted diffusion and flow. J. Chem. Phys. 43(10), 3597–3603 (1965)

    Article  Google Scholar 

  3. Basser, P., Mattiello, J., LeBihan, D.: Estimation of the effective self-diffusion tensor from the NMR spin echo. J. Mag. Reson. Ser. B 103(3), 247–254 (1994)

    Article  Google Scholar 

  4. Merlet, S., Deriche, R.: Continuous diffusion signal, EAP and ODF estimation via compressive sensing in diffusion MRI. Med. Im. Anal. 17(5), 556–572 (2013)

    Article  Google Scholar 

  5. Özarslan, E., Koay, C., Shepherd, T., Komlosh, M., İrfanoğlu, M., Pierpaoli, C., Basser, P.: Mean apparent propagator (map) MRI: a novel diffusion imaging method for mapping tissue microstructure. NeuroImage 78, 16–32 (2013)

    Article  Google Scholar 

  6. Barazanyand, D., Jones, D., Assaf, Y.: Axcaliber 3D. In: ISMRM (2011)

    Google Scholar 

  7. Bar-Shir, A., Avram, L., Özarslan, E., Basser, P., Cohen, Y.: The effect of the diffusion time and pulse gradient duration ratio on the diffraction pattern and the structural information estimated from q space diffusion MR: experiments and simulations. J. Mag. Reson. 194(2), 230–236 (2008)

    Article  Google Scholar 

  8. Özarslan, E., Shemesh, E., Koay, N., Cohen, C., Basser, P.: Nuclear magnetic resonance characterization of general compartment size distributions. New J. Phys. 13(1), 015010 (2011)

    Article  Google Scholar 

  9. Sanguinetti, G., Deriche, R.: Mapping average axon diameters under long diffusion time. In: ISBI (2014)

    Google Scholar 

  10. Callaghan, P.: Pulsed-gradient spin-echo NMR for planar, cylindrical, and spherical pores under conditions of wall relaxation. JMR Ser. A 113(1), 53–59 (1995)

    Google Scholar 

  11. Sparse Reconstruction Challenge for Diffusion. http://projects.iq.harvard.edu/sparcdmri/challenge

  12. Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Regularized, fast, and robust analytical Qball imaging. MRM 58(3), 497–510 (2007)

    Article  Google Scholar 

  13. Craven, P., Wahba, G.: Smoothing noisy data with spline functions. Numer. Math. 31(4), 377–403 (1978)

    Article  MathSciNet  Google Scholar 

  14. Alexander, D., Hubbard, P., Hall, M., Moore, E., Ptito, M., Parker, G., Dyrby, T.: Orientationally invariant indices of axon diameter and density from diffusion MRI. Neuroimage 52(4), 1374–1389 (2010)

    Article  Google Scholar 

  15. Assaf, Y., Basser, P.: Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain. Neuroimage 27(1), 48–58 (2005)

    Article  Google Scholar 

  16. Assaf, Y., Freidlin, R., Rohde, G., Basser, P.: New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter. MRM 52(5), 965–978 (2004)

    Article  Google Scholar 

  17. Caruyer, E., Lenglet, C., Sapiro, G., Deriche, R.: Design of multishell sampling schemes with uniform coverage in diffusion MRI. MRM 69(6), 1534–1540 (2013)

    Article  Google Scholar 

  18. Dyrby, T., Baaré, W., Alexander, D., Jelsing, J., Garde, E., Søgaard, L.: An ex vivo imaging pipeline for producing high quality and high resolution diffusion weighted imaging datasets. HBM 32(4), 544–563 (2011)

    Article  Google Scholar 

  19. Garyfallidis, E., Brett, M., Amirbekian, B., Rokem, A., van der Walt, S., Descoteaux, M., Nimmo-Smith, I., Contributors, D.: Dipy, a library for the analysis of diffusion MRI data. Front. Neuroinformatics 8(8), 1–17 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rutger Fick .

Editor information

Editors and Affiliations

A Analytic Laplacian Regularization

A Analytic Laplacian Regularization

Here we compute the analytic form of the Laplacian regularization matrix in Eq. (8). As our basis is separable in \(\mathbf{q}\) and \(\tau \), we can separate the Laplacian over our basis function \(\varXi _i\) in a the spatial and temporal Laplacian as

$$\begin{aligned} \nabla ^2 \varXi _{i}(\mathbf{q},\tau ,u_s,u_t)=\left( \nabla ^2_\mathbf{q}S_i(\mathbf{q},u_s)\right) T_i(\tau ,u_t)+ S_i(\mathbf{q},u_s)\left( \nabla ^2_\tau T_i(\tau ,u_t)\right) \end{aligned}$$
(13)

with \(\nabla ^2_\mathbf{q}\) and \(\nabla ^2_\tau \) the Laplacian to either \(\mathbf{q}\) or \(\tau \). We then rewrite Eq. (8) as

$$\begin{aligned} \mathbf{U}_{ik}&= \overbrace{\int _{\mathbb {R}}(\nabla ^2_\mathbf{q} S_i)(\nabla ^2_\mathbf{q} S_k)d\mathbf{q}\int _{\mathbb {R}}T_iT_kd\tau }^{\mathbf{U}^\text {I}_{ik}} +\overbrace{\int _{\mathbb {R}}(\nabla ^2_\mathbf{q} S_i)S_kd\mathbf{q}\int _{\mathbb {R}}T_i(\nabla ^2_\tau T_k)d\tau }^{\mathbf{U}^\text {IIa}_{ik}}\\&+\underbrace{\int _{\mathbb {R}}S_i(\nabla ^2_\mathbf{q} S_k)d\mathbf{q}\int _{\mathbb {R}}(\nabla ^2_\tau T_i)T_kd\tau }_{\mathbf{U}^\text {IIb}_{ik}} +\underbrace{\int _{\mathbb {R}}S_iS_kd\mathbf{q}\int _{\mathbb {R}}(\nabla ^2_\tau T_i)(\nabla ^2_\tau T_k)d\tau }_{\mathbf{U}^\text {III}_{ik}} \end{aligned}$$

where \(\mathbf{U}^{\text {IIa}}_{ik}=\mathbf{U}^{\text {IIb}}_{ki}\). In all cases the integrals over \(\mathbf{q}\) and \(\tau \) can be calculated to a closed form using the orthogonality of the spherical harmonics, and Laguerre polynomials with respect to weighting function \(e^{-x}\). The closed form of \(\mathbf{U}^\text {I}\) is

$$\begin{aligned} {}{\mathbf{U}^\text {I}_{ik}=\frac{u_s}{u_t}\delta _{o(k)}^{o(i)}\delta _{l(k)}^{l(i)}\delta _{m(k)}^{m(i)} {\left\{ \begin{array}{ll} \delta _{(j(i),j(k)+2)}\frac{2^{2-l}\pi ^2 \varGamma (\frac{5}{2}+j(k)+l)}{\varGamma (j(k))} &{} \\ \delta _{(j(i),j(k)+1)}\frac{2^{2-l}\pi ^2 (-3+4j(i)+2l)\varGamma (\frac{3}{2}+j(k)+l)}{\varGamma (j(k))} &{} \\ \delta _{(j(i),j(k))}\frac{2^{-l}\pi ^2\left( 3+24j(i)^2+4(-2+l)l+12j(i)(-1+2l)\right) \varGamma (\frac{1}{2}+j(i)+l)}{\varGamma (j(i))} &{} \\ \delta _{(j(i),j(k)-1)}\frac{2^{2-l}\pi ^2 (-3+4j(k)+2l)\varGamma (\frac{3}{2}+j(i)+l)}{\varGamma (j(i))} &{} \\ \delta _{(j(i),j(k)-2)}\frac{2^{2-l}\pi ^2 \varGamma (\frac{5}{2}+j(i)+l)}{\varGamma (j(i))} &{} \end{array}\right. }} \end{aligned}$$

where \(\delta \) is the Kronecker delta. Similarly computing \(\mathbf{U}^\text {II}_{ik}=\mathbf{U}^\text {IIa}_{ik}+\mathbf{U}^\text {IIb}_{ki}\) gives

$$\begin{aligned} \mathbf{U}^\text {II}_{ik}&=\frac{u_t}{u_s}\delta _{l(k)}^{l(i)}\delta _{m(k)}^{m(i)} {\left\{ \begin{array}{ll} \delta _{(j(i),j(k)+1)}\frac{2^{-l}\varGamma (\frac{3}{2}+j(k)+l)}{\varGamma (j(k))} &{} \\ \delta _{(j(i),j(k))}\frac{2^{-(l+1)}\left( 1-4j(i)-2l\right) \varGamma (\frac{1}{2}+j(i)+l)}{\varGamma (j(i))} &{} \\ \delta _{(j(i),j(k)-1)}\frac{2^{-l}\varGamma (\frac{3}{2}+j(i)+l)}{\varGamma (j(i))} &{} \end{array}\right. }\\&\times \left( \frac{1}{2}\delta _{o(i)}^{o(k)}+(1-\delta _{o(i)}^{o(k)})\cdot |o(i)-o(k)|\right) \nonumber \end{aligned}$$

where \(|\cdot |\) is the absolute sign. We now denote the operator \(M_{x_1}^{x_2}=\text {min}(x_1,x_2)\) for the minimal value of \(x_1,x_2\) and \(H_x\) the Heaviside step function with \(H_x=1\,\text {iff}\,x\ge 0\). The last term \(\mathbf{U}^\text {III}_{ik}\) evaluates to

$$\begin{aligned} \mathbf{U}^\text {III}_{ik}&=\frac{u_t^3}{u_s^3}\delta _{j(k)}^{j(i)}\delta _{l(k)}^{l(i)}\delta _{m(k)}^{m(i)}\frac{2^{-(l+2)}\varGamma (j(i)+l+1/2)}{\pi ^2\varGamma (j)} \times \Bigg (\frac{1}{4}|o(i)-o(k)| + \frac{1}{16}\delta _{o(i)}^{o(k)}+M_{o(i)}^{o(k)}\\&+\textstyle {\sum _{p=1}^{M_{o(i)}^{o(k)}+1}}(o(i)-p)(o(k)-p)H_{M_{o(i)}^{o(k)}-p}+H_{o(i)-1}H_{o(k)-1}\bigg (o(i)+o(k)+2\\&+ \textstyle {\sum _{p=0}^{M_{o(i)-1}^{o(k)-2}}}p +\textstyle {\sum _{p=0}^{M_{o(i)-2}^{o(k)-1}}}p+M_{o(i)-1}^{o(k)-1}\left( |o(i)-o(k)|-1\right) H_{\left( |o(i)-o(k)|-1\right) }\bigg )\Bigg ) \end{aligned}$$

We finally compute the complete 3D+t Laplacian regularization matrix as

$$\begin{aligned} \mathbf{U}=\mathbf{U}^\text {I}+\mathbf{U}^\text {II}+\mathbf{U}^\text {III} \end{aligned}$$
(14)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Fick, R., Wassermann, D., Pizzolato, M., Deriche, R. (2015). A Unifying Framework for Spatial and Temporal Diffusion in Diffusion MRI. In: Ourselin, S., Alexander, D., Westin, CF., Cardoso, M. (eds) Information Processing in Medical Imaging. IPMI 2015. Lecture Notes in Computer Science(), vol 9123. Springer, Cham. https://doi.org/10.1007/978-3-319-19992-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19992-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19991-7

  • Online ISBN: 978-3-319-19992-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics