Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 345 Accesses

Abstract

Although the search for the Higgs boson is motivated by the electroweak interaction, a detailed knowledge of quantum chromodynamics (QCD) is required to make precise predictions at a hadron collider such as the LHC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A mathematically rigorous proof of confinement is one of seven Millennium Prize Problems of the Clay Mathematics Institute, with a bounty of $1,000,000.

References

  1. R.K. Ellis, W.J. Stirling, B.R. Webber, QCD and Collider Physics (Cambridge University Press, Cambridge, 1996)

    Book  Google Scholar 

  2. I.J.R. Aitchison, A.J.G. Hey, Gauge Theories in Particle Physics, 3rd edn. (Taylor and Francis, Abingdon, 2003)

    Book  Google Scholar 

  3. K.G. Wilson, Confinement of quarks. Phys. Rev. D 10, 2445 (1974)

    Article  ADS  Google Scholar 

  4. D.J. Gross, F. Wilczek, Ultraviolet behavior of non-Abelian Gauge theories. Phys. Rev. Lett. 30, 1343 (1973)

    Article  ADS  Google Scholar 

  5. H.D. Politzer, Reliable perturbative results for strong interactions? Phys. Rev. Lett. 30, 1346 (1973)

    Google Scholar 

  6. Particle Data Group, Review of particle physics. Phys. Rev. D 86, 010001 (2012), and 2013 partial update for the 2014 ed

    Google Scholar 

  7. J.C. Collins, D.E. Soper, Parton distribution and decay functions. Nucl. Phys. B 194, 445 (1982)

    Google Scholar 

  8. V.N. Gribov, L.N. Lipatov, Deep inelastic \(ep\) scattering in perturbation theory. Sov. J. Nucl. Phys. 15, 438 (1972)

    Google Scholar 

  9. G. Altarelli, G. Parisi, Asymptotic freedom in parton language. Nucl. Phys. B 126, 298 (1977)

    Google Scholar 

  10. Y. L. Dokshitser, Calculation of structure functions of deep inelastic scattering and \(e^{+}e^{-}\) annihilation by perturbative theory in quantum chromodynamics. Sov. Phys.-JETP 46, 641 (1977)

    Google Scholar 

  11. A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Parton distributions for the LHC. Eur. Phys. J. C 63, 189 (2009), arXiv:0901.0002 [hep-ph]

  12. A. Buckley et al., General-purpose event generators for LHC physics. Phys. Rep. 504, 145 (2011), arXiv:1101.2599 [hep-ph]

  13. S. Höche, Matching to matrix elements, in MCnet-LPCC Summer School on Monte Carlo Event Generators for LHC, Geneva (2012)

    Google Scholar 

  14. M.R. Whalley, D. Bourilkov, R.C. Group, The Les Houches accord PDFs (LHAPDF) and LHAGLUE, in HERA and the LHC, Hamburg (2005), arXiv:hep-ph/0508110

  15. H.-L. Lai et al., New parton distributions for collider physics. Phys. Rev. D 82, 074024 (2010), arXiv:1007.2241 [hep-ph]

  16. R.D. Ball et al., Parton distributions with LHC data. Nucl. Phys. B 867, 244 (2013), arXiv:1207.1303 [hep-ph]

  17. G. Corcella et al., HERWIG 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes). JHEP 0101, 010 (2001), arXiv:hep-ph/0210213

  18. M. Bähr et al., Herwig++ physics and manual. Eur. Phys. J. C 58, 639 (2008), arXiv:0803.0883 [hep-ph]

  19. J.M. Butterworth, J.R. Forshaw, M.H. Seymour, Multiparton interactions in photoproduction at HERA. Z. Phys. C 72, 637 (1996), arXiv:hep-ph/9601371

  20. T. Sjöstrand, S. Mrenna, P. Skands, PYTHIA 6.4 physics and manual. JHEP 0605, 026 (2006), arXiv:hep-ph/0603175

  21. T. Sjöstrand, S. Mrenna, P. Skands, A brief introduction to PYTHIA 8.1. Comput. Phys. Commun. 178, 852 (2008), arXiv:0710.3820[hep-ph]

  22. T. Gleisberg et al., Event generation with SHERPA 1.1. JHEP 0902, 007 (2009), arXiv:0811.4622 [hep-ph]

  23. S. Catani, F. Krauss, R. Kuhn, B.R. Webber, QCD matrix elements + parton showers. JHEP 0111, 063 (2001), arXiv:hep-ph/0109231

  24. L. Lonnblad, Correcting the color-dipole cascade model with fixed order matrix elements. JHEP 0205, 046 (2002), arXiv:hep-ph/0112284

  25. S. Hoeche et al., Matching parton showers and matrix elements (2006), arXiv:hep-ph/0602031

  26. M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau, A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions. JHEP 0307, 001 (2003), arXiv:hep-ph/0206293

  27. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, T. Stelzer, MadGraph 5: going beyond. JHEP 1106, 128 (2011), arXiv:1106.0522 [hep-ph]

  28. P. Nason, B. Webber, Next-to-leading-order event generators. Ann. Rev. Nucl. Part. Sci. 62, 187 (2012), arXiv:1202.1251 [hep-ph]

  29. S. Frixione, B.R. Webber, Matching NLO QCD computations and parton shower simulations. JHEP 0206, 029 (2002), arXiv:hep-ph/0204244

  30. S. Frixione, F. Stoeckli, P. Torrielli, B.R. Webber, NLO QCD corrections in Herwig++ with MC@NLO. JHEP 1101, 053 (2011), arXiv:1010.0568 [hep-ph]

  31. V. Hirschi et al., Automation of one-loop QCD corrections. JHEP 1105, 044 (2011), arXiv:1103.0621 [hep-ph]

  32. P. Torrielli, S. Frixione, Matching NLO QCD computations with PYTHIA using MC@NLO. JHEP 1004, 110 (2010), arXiv:1002.4293 [hep-ph]

  33. P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms. JHEP 0411, 040 (2004), arXiv:hep-ph/0409146

  34. S. Frixione, P. Nason, C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method. JHEP 0711, 070 (2007), arXiv:0709.2092 [hep-ph]

  35. S. Alioli, P. Nason, C. Oleari, E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX. JHEP 1006, 043 (2010), arXiv:1002.2581 [hep-ph]

  36. S. Agostinelli et al., Geant4—a simulation toolkit. Nucl. Instrum. Methods A506, 250 (2003)

    Google Scholar 

  37. ATLAS Collaboration, The ATLAS simulation infrastructure, Eur. Phys. J. C 70, 823 (2010), arXiv:1005.4568[physics.ins-det]

  38. ATLAS Collaboration, The simulation principle and performance of the ATLAS fast calorimeter simulation FastCaloSim, ATL-PHYS-PUB-2010-013 (2010)

    Google Scholar 

  39. ATLAS Collaboration, Summary of ATLAS Pythia 8 tunes. ATL-PHYS-PUB-2012-003 (2012)

    Google Scholar 

  40. ATLAS Collaboration, Example ATLAS tunes of Pythia8, Pythia6 and Powheg to an observable sensitive to \(Z\) boson transverse momentum. ATL-PHYS-PUB-2013-017 (2013)

    Google Scholar 

  41. G.P. Salam, Towards jetography. Eur. Phys. J. C 67, 637 (2010), arXiv:0906.1833 [hep-ph]

  42. M. Cacciari, G.P. Salam, G. Soyez, FastJet user manual. Eur. Phys. J. C 72, 1896 (2012), arXiv:1111.6097 [hep-ph]

  43. M. Cacciari, G.P. Salam, G. Soyez, The anti-\(k_t\) jet clustering algorithm. JHEP 0804, 063 (2008), arXiv:0802.1189 [hep-ph]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Hall .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hall, D. (2015). Computational Techniques for the LHC. In: Discovery and Measurement of the Higgs Boson in the WW Decay Channel. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-19989-4_2

Download citation

Publish with us

Policies and ethics