Skip to main content

Estimating the Intensity of Long-Range Dependence in Real and Synthetic Traffic Traces

  • Conference paper
  • First Online:
Book cover Computer Networks (CN 2015)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 522))

Included in the following conference series:

Abstract

This paper examines various techniques for estimating the intensity of Long-Range Dependence (LRD). Trial data sets with LRD are generated using Fractional Gaussian noise and Markov modulated Poisson process. The real data set collected in IITiS PAN is also used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crovella, M., Bestavros, A.: Self-similarity in world wide web traffic: evidence and possible causes. IEEE/ACM Trans. Netw. 5, 835–846 (1997)

    Article  Google Scholar 

  2. Karagiannis, T., Molle, M., Faloutsos, M.: Long-range dependence: ten years of internet traffic modeling. IEEE Internet Comput. 8(5), 57–64 (2004)

    Article  Google Scholar 

  3. Domański, A., Domańska, J., Czachórski, T.: The impact of self-similarity on traffic shaping in wireless LAN. In: Balandin, S., Moltchanov, D., Koucheryavy, Y. (eds.) NEW2AN 2008. LNCS, vol. 5174, pp. 156–168. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Domańska, J., Domański, A., Czachórski, T.: A few investigation of long-range dependence in network traffic. In: Czachórski, T., Gelenbe, E., Lent, R. (eds.) Information Science and Systems 2014, pp. 137–144. Springer International Publishing, Switzerland (2014)

    Chapter  Google Scholar 

  5. Domańska, J., Domański, A.: The influence of traffic self-similarity on QoS mechanism. In: International Symposium on Applications and the Internet, SAINT. Trento, Italy (2005)

    Google Scholar 

  6. Domańska, J., Augustyn, D.R., Domański, A.: The choice of optimal 3-rd order polynomial packet dropping function for NLRED in the presence of self-similar traffic. Bull. Pol. Acad. Sci. Tech. Sci. 60(4), 779–786 (2012)

    Google Scholar 

  7. Stallings, W.: High-Speed Networks: TCP/IP and ATM Design Principles. Prentice-Hall, New Jersey (1998)

    Google Scholar 

  8. Muscariello, L., Mellia, M., Meo, M., Ajmone Marsan, M., Lo Cigno, R.: Markov models of internet traffic and a new hierarchical MMPP model. Comput. Commun. 28(16), 1835–1851 (2005)

    Article  Google Scholar 

  9. Foremski, P., Gorawski, M., Grochla, K.: Source model of TCP traffic in LTE networks. In: Czachórski, T., Gelenbe, E., Lent, R. (eds.) Information Science and Systems 2014, pp. 125–135. Springer International Publishing, Switzerland (2014)

    Chapter  Google Scholar 

  10. Erramilli, A., Singh, R.P., Pruthi, P.: An application of deterministic chaotic maps to model packet traffic. Queueing Syst. 20(1–2), 171–206 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gallardo, J.R., Makrakis, D., Orozco-Barbosa, L.: Use of \(\alpha \)-stable self-similar stochastic processes for modeling traffic in broadband networks. Perform. Eval. 40(1–3), 71–98 (2000)

    Article  MATH  Google Scholar 

  12. Harmantzis, F.C., Hatzinakos, D.: Heavy network traffic modeling and simulation using stable FARIMA processes. In: 19th International Teletraffic Congress, pp. 300–303. Beijing, China (2005)

    Google Scholar 

  13. Laskin, N., Lambadatis, I., Harmantzis, F.C., Devetsikiotis, M.: Fractional Levy motion and its application to network traffic modeling. In: Computer Networks, vol. 40, no. 3, pp. 363–375. Elsevier Science Publishers B.V. (2002)

    Google Scholar 

  14. Robert, S., Boudec, J.Y.L.: New models for pseudo self-similar traffic. Perform. Eval. 30(1–2), 57–68 (1997)

    Article  Google Scholar 

  15. Clegg, R.G.: Markov-modulated on/off processes for long-range dependent internet traffic. In: Computing Research Repository (2006). CoRR. arXiv:cs/0610135

  16. Domańska, J., Domański, A., Czachórski, T.: Internet traffic source based on hidden markov model. In: Balandin, S., Koucheryavy, Y., Hu, H. (eds.) NEW2AN 2011 and ruSMART 2011. LNCS, vol. 6869, pp. 395–404. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  17. Domańska, J., Domański, A., Czachórski, T.: Modeling packet traffic with the use of superpositions of two-state MMPPs. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2014. CCIS, vol. 431, pp. 24–36. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  18. Lopez-Ardao, J.C., Lopez-Garcia, C., Suarez-Gonzalez, A., Fernandez-Veiga, M., Rodriguez-Rubio, R.: On the use of self-similar processes in network simulation. ACM Trans. Model. Comput. Simul. 10(2), 125–151 (2000)

    Article  Google Scholar 

  19. Gong, W.-B., Liu, Y., Misra, V., Towsley, D.: Self-similarity and long range dependence on the internet: a second look at the evidence, origins and implications. Comput. Netw. 48(3), 377–399 (2005)

    Article  Google Scholar 

  20. Bhattacharjee, A., Nandi, S.: Statistical analysis of network traffic inter-arrival. In: 12th International Conference on Advanced Communication Technology, pp. 1052–1057. USA (2010)

    Google Scholar 

  21. Nogueira, A., Salvador, P., Valadas, R., Pacheco, A.: Markovian modelling of internet traffic. In: Kouvatsos, D.D. (ed.) Next Generation Internet: Performance Evaluation and Applications. LNCS, vol. 5233, pp. 98–124. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  22. Tsybakov, B., Georganas, N.D.: On self-similar traffic in ATM queues: definitions, overflow probability bounds, and cell delay distribution. IEEE/ACM Trans. Netw. 5(3), 397–409 (1997)

    Article  Google Scholar 

  23. Mandelbrot, B.B., Ness, J.V.: Fractional brownian motions, fractional noises and applications. SIAM Rev. 10(4), 422–437 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  24. Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman and Hall (1994)

    Google Scholar 

  25. Cox, D.R.: Long-range dependance: a review. In: Statistics: An Appraisal (1984)

    Google Scholar 

  26. Paxson, V.: Fast, approximate synthesis of fractional Gaussian noise for generating self-similar network traffic. ACM SIGCOMM Comput. Commun. Rev. 27(5), 5–18 (1997)

    Article  Google Scholar 

  27. Grossglauser, M., Bolot, J.C.: On the relevance of long-range dependence in network traffic. IEEE/ACM Trans. Netw. 7(5), 629–640 (1999)

    Article  Google Scholar 

  28. Nogueira, A., Valadas, R.: Analyzing the relevant time scales in a network of queues. In: SPIE Proceedings, vol. 4523 (2001)

    Google Scholar 

  29. Andersen, A.T., Nielsen, B.F.: A markovian approach for modeling packet traffic with long-range dependence. IEEE J. Sel. Areas Commun. 16(5), 719–732 (1998)

    Article  Google Scholar 

  30. Fischer, W., Meier-Hellstern, K.: The Markov-modulated poisson process (MMPP) cookbook. Perform. Eval. 18(2), 149–171 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  31. Stolojescu, C., Isar, A.A.: Comparison of some Hurst parameter estimators. In: 13th International Conference on Optimization of Electrical and Electronic Equipment, pp. 1152–1157. Brasov, Romania (2012)

    Google Scholar 

  32. Rutka, G.: Neural network models for internet traffic prediction. Electron. Electr. Eng. 4(68) (2006)

    Google Scholar 

  33. Abry, P., Veitch, D.: Wavelet analysis of long-range-dependent traffic. IEEE Trans. Inf. Theory 44(1), 2–15 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  34. Foremski, P., Callegari, C., Pagano, M.: Waterfall: rapid identification of IP flows using cascade classification. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2014. CCIS, vol. 431, pp. 14–23. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  35. Clegg, R.G.: A practical guide to measuring the hurst parameter. Int. J. Simul. 7(2), 3–14 (2006)

    MathSciNet  Google Scholar 

  36. Beran, J.: Statistics for Long-Memory Processes. Chapman and Hall (1994)

    Google Scholar 

  37. Taqqu, M.S., Teverovsky, V.: On estimating the intensity of long-range dependence in finite anf infinite variance time series. In: A Practical Guide To Heavy Tails: Statistical Techniques and Applications, pp. 177–217. Birkhauser Boston Inc., Boston (1998)

    Google Scholar 

  38. Park, C., Hernandez-Campos, F., Long, L., Marron, J., Park, J., Pipiras, V., Smith, F., Smith, R., Trovero, M., Zhu, Z.: Long range dependence analysis of internet traffic. J. Appl. Stat. 38(7), 1407–1433 (2011)

    Article  MathSciNet  Google Scholar 

  39. Mandelbrot, B.B., Wallis, J.: Computer experiments with fractional gaussian noises. Water Resour. Res. 5(1), 228–241 (1969)

    Article  Google Scholar 

  40. Geweke, J., Porter-Hudak, S.: The estimation and application of long memory time series models. J. Time Ser. Anal. 4(4), 221–238 (1983)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadeusz Czachórski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Domańska, J., Domański, A., Czachórski, T. (2015). Estimating the Intensity of Long-Range Dependence in Real and Synthetic Traffic Traces. In: Gaj, P., Kwiecień, A., Stera, P. (eds) Computer Networks. CN 2015. Communications in Computer and Information Science, vol 522. Springer, Cham. https://doi.org/10.1007/978-3-319-19419-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19419-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19418-9

  • Online ISBN: 978-3-319-19419-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics