Skip to main content

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 228))

  • 277k Accesses

Abstract

We first derive the duality theory of for constrained optimization, which is based on our earlier zero-order optimality conditions and the Lagrangian relaxations. The variables of the dual are typically the Lagrange multipliers associated with the constraints in the primal problem—the original constrained optimization problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. D.P. Bertsekas, Nonlinear Programming (Athena Scientific, Belmont, 1995)

    Google Scholar 

  2. S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1–122 (2010)

    Article  Google Scholar 

  3. C.H. Chen, B.S. He, Y.Y. Ye, X.M. Yuan, The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent. Math. Program. (2014). doi:10.1007/s10107-014-0826-5

    Google Scholar 

  4. B.C. Eaves, W.I. Zangwill, Generalized cutting plane algorithms. Working Paper No. 274, Center for Research in Management Science, University of California, Berkeley (July 1969)

    Google Scholar 

  5. J. Eckstein, D.P. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)

    Article  Google Scholar 

  6. H. Everett III, Generalized lagrange multiplier method for solving problems of optimum allocation of resources. Oper. Res. 11, 399–417 (1963)

    Article  Google Scholar 

  7. W. Fenchel, Convex Cones, Sets, and Functions. Lecture Notes (Department of Mathematics, Princeton University, Princeton, NJ, 1953)

    Google Scholar 

  8. M. Fortin, R. Glowinski, On decomposition-coordination methods using an augmented Lagrangian, in Augmented Lagrangian Methods: Applications to the Solution of Boundary Problems, ed. by M. Fortin, R. Glowinski (North- Holland, Amsterdam, 1983)

    Google Scholar 

  9. D. Gabay, B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite element approximations. Comput. Math. Appl. 2, 17–40 (1976)

    Google Scholar 

  10. R. Glowinski, A. Marrocco, Approximation par éléments finis d’ordre un et résolution par pénalisation-dualité d’une classe de problèmes non linéaires. R.A.I.R.O. R2 2, 41–76 (1975)

    Google Scholar 

  11. B.S. He, X.M. Yuan, On the O(1∕n) convergence rate of the Douglas-Rachford alternating direction method. SIAM J. Numer. Anal. 50, 700–709 (2012)

    Google Scholar 

  12. M.R. Hestenes, Multiplier and gradient methods. J. Opt. Theory Appl. 4(5), 303–320 (1969)

    Article  Google Scholar 

  13. L. Hurwicz, Programming in linear spaces, in Studies in Linear and Nonlinear Programming, ed. by K.J. Arrow, L. Hurwicz, H. Uzawa (Stanford University Press, Stanford, CA, 1958)

    Google Scholar 

  14. S. Karlin, Mathematical Methods and Theory in Games, Programming, and Economics, vol. I (Addison-Wesley, Reading, MA, 1959)

    Google Scholar 

  15. J.E. Kelley, The cutting-plane method for solving convex programs. J. Soc. Ind. Appl. Math. VIII(4), 703–712 (1960)

    Google Scholar 

  16. D.G. Luenberger, Optimization by Vector Space Methods (Wiley, New York, 1969)

    Google Scholar 

  17. D.G. Luenberger, Introduction to Linear and Nonlinear Programming, 1st edn. (Addison-Wesley, Reading, MA, 1973)

    Google Scholar 

  18. R.D.C. Monteiro, B.F. Svaiter, Iteration-complexity of block-decomposition algorithms and the alternating direction method of multipliers. SIAM J. Optim. 23, 475–507 (2013)

    Article  Google Scholar 

  19. M.J.D. Powell, A method for nonlinear constraints in minimization problems, in Optimization, ed. by R. Fletcher Powell (Academic, London, 1969), pp. 283–298

    Google Scholar 

  20. R.T. Rockafellar, The multiplier method of hestenes and powell applied to convex programming. J. Optim. Theory Appl. 12, 555–562 (1973)

    Article  Google Scholar 

  21. M. Slater, Lagrange multipliers revisited: a contribution to non-linear programming. Cowles Commission Discussion Paper, Math 403 (November 1950)

    Google Scholar 

  22. D.M. Topkis, A note on cutting-plane methods without nested constraint sets. ORC 69-36, Operations Research Center, College of Engineering, Berkeley, CA (December 1969)

    Google Scholar 

  23. A.F. Veinott Jr., The supporting hyperplane method for unimodal programming. Oper. Res. XV 1, 147–152 (1967)

    Article  Google Scholar 

  24. P. Wolfe, A duality theorem for nonlinear programming. Q. Appl. Math. 19, 239–244 (1961)

    Google Scholar 

  25. P. Wolfe, Convergence theory in nonlinear programming (Chap. 1), in Integer and Nonlinear Programming, ed. by J. Abadie (North-Holland Publishing Company, Amsterdam, 1970)

    Google Scholar 

  26. W.I. Zangwill, Nonlinear Programming: A Unified Approach (Prentice-Hall, Englewood Cliffs, NJ, 1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Luenberger, D.G., Ye, Y. (2016). Duality and Dual Methods. In: Linear and Nonlinear Programming. International Series in Operations Research & Management Science, vol 228. Springer, Cham. https://doi.org/10.1007/978-3-319-18842-3_14

Download citation

Publish with us

Policies and ethics