Skip to main content

Effective Nutritional Supplement Combinations

  • Chapter
  • 3903 Accesses

Abstract

Few supplement combinations that are marketed to athletes are supported by scientific evidence of their effectiveness. Under the rigor of scientific investigation, we often see that the patented combination fails to provide any greater benefit when compared to an active (generic) ingredient. The focus of this chapter is supplement combinations and dosing strategies that are effective at promoting an acute physiological response that may improve/enhance exercise performance and/or influence chronic adaptations desired from training. In recent years, there has been a particular focus on two nutrition ergogenic aids—creatine monohydrate and protein/amino acids—in combination with specific nutrients in an effort to augment or add to their already established independent ergogenic effects. These combinations and others are discussed in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Balsom PD, Soderlund K, Ekblom B. Creatine in humans with special reference to creatine supplementation. Sports Med. 1994;18(4):268–80.

    Article  CAS  PubMed  Google Scholar 

  2. Greenhaff P. The nutritional biochemistry of creatine. J Nutr Biochem. 1997;8(11):610–8.

    Article  CAS  Google Scholar 

  3. Walsh B, Tonkonogi M, Soderlund K, Hultman E, Saks V, Sahlin K. The role of phosphorylcreatine and creatine in the regulation of mitochondrial respiration in human skeletal muscle. J Physiol. 2001;537(Pt 3):971–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. McConell GK, Shinewell J, Stephens TJ, Stathis CG, Canny BJ, Snow RJ. Creatine supplementation reduces muscle inosine monophosphate during endurance exercise in humans. Med Sci Sports Exerc. 2005;37(12):2054–61.

    Article  CAS  PubMed  Google Scholar 

  5. Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J. 1992;281(Pt 1):21–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Tesch PA, Thorsson A, Fujitsuka N. Creatine phosphate in fiber types of skeletal muscle before and after exhaustive exercise. J Appl Physiol. 1989;66(4):1756–9.

    CAS  PubMed  Google Scholar 

  7. Greenhaff PL, Bodin K, Soderlund K, Hultman E. Effect of oral creatine supplementation on skeletal muscle phosphocreatine resynthesis. Am J Physiol. 1994;266(5 Pt 1):E725–30.

    CAS  PubMed  Google Scholar 

  8. Bessman SP, Geiger PJ. Transport of energy in muscle: the phosphorylcreatine shuttle. Science. 1981;211(4481):448–52.

    Article  CAS  PubMed  Google Scholar 

  9. Hultman E, Greenhaff PL. Skeletal muscle energy metabolism and fatigue during intense exercise in man. Sci Prog. 1991;75(298 Pt 3–4):361–70.

    CAS  PubMed  Google Scholar 

  10. Bogdanis GC, Nevill ME, Boobis LH, Lakomy HK, Nevill AM. Recovery of power output and muscle metabolites following 30 s of maximal sprint cycling in man. J Physiol. 1995;482(Pt 2):467–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Harris RC, Soderlund K, Hultman E. Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin Sci. 1992;83(3):367–74.

    Article  CAS  PubMed  Google Scholar 

  12. Hultman E, Soderlund K, Timmons JA, Cederblad G, Greenhaff PL. Muscle creatine loading in men. J Appl Physiol. 1996;81(1):232–7.

    CAS  PubMed  Google Scholar 

  13. Folin O, Denis W. Protein metabolism from the standpoint of blood and tissue analysis: seventh paper. An interpretation of creatine and creatinine in relation to animal metabolism. J Biol Chem. 1914;17:493–502.

    CAS  Google Scholar 

  14. Greenhaff PL, Casey A, Short AH, Harris R, Soderlund K, Hultman E. Influence of oral creatine supplementation of muscle torque during repeated bouts of maximal voluntary exercise in man. Clin Sci. 1993;84(5):565–71.

    Article  CAS  PubMed  Google Scholar 

  15. Bergstrom J, Hultman E. Muscle glycogen synthesis after exercise: an enhancing factor localized to the muscle cells in man. Nature. 1966;210(5033):309–10.

    Article  CAS  PubMed  Google Scholar 

  16. Bergstrom J, Hultman E. A study of the glycogen metabolism during exercise in man. Scand J Clin Lab Invest. 1967;19(3):218–28.

    Article  CAS  PubMed  Google Scholar 

  17. Hermansen L, Hultman E, Saltin B. Muscle glycogen during prolonged severe exercise. Acta Physiol Scand. 1967;71(2):129–39.

    Article  CAS  PubMed  Google Scholar 

  18. Jager R, Purpura M, Shao A, Inoue T, Kreider RB. Analysis of the efficacy, safety, and regulatory status of novel forms of creatine. Amino Acids. 2011;40(5):1369–83.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Deldicque L, Decombaz J, Zbinden Foncea H, Vuichoud J, Poortmans JR, Francaux M. Kinetics of creatine ingested as a food ingredient. Eur J Appl Physiol. 2008;102(2):133–43.

    Article  CAS  PubMed  Google Scholar 

  20. Birch R, Noble D, Greenhaff PL. The influence of dietary creatine supplementation on performance during repeated bouts of maximal isokinetic cycling in man. Eur J Appl Physiol Occup Physiol. 1994;69(3):268–76.

    Article  CAS  PubMed  Google Scholar 

  21. Casey A, Constantin-Teodosiu D, Howell S, Hultman E, Greenhaff PL. Creatine ingestion favorably affects performance and muscle metabolism during maximal exercise in humans. Am J Physiol. 1996;271(1 Pt 1):E31–7.

    CAS  PubMed  Google Scholar 

  22. Earnest CP, Snell PG, Rodriguez R, Almada AL, Mitchell TL. The effect of creatine monohydrate ingestion on anaerobic power indices, muscular strength and body composition. Acta Physiol Scand. 1995;153(2):207–9.

    Article  PubMed  Google Scholar 

  23. Febbraio MA, Flanagan TR, Snow RJ, Zhao S, Carey MF. Effect of creatine supplementation on intramuscular TCr, metabolism and performance during intermittent, supramaximal exercise in humans. Acta Physiol Scand. 1995;155(4):387–95.

    Article  CAS  PubMed  Google Scholar 

  24. Kreider RB, Ferreira M, Wilson M, Grindstaff P, Plisk S, Reinardy J, et al. Effects of creatine supplementation on body composition, strength, and sprint performance. Med Sci Sports Exerc. 1998;30(1):73–82.

    Article  CAS  PubMed  Google Scholar 

  25. Kreider RB, Klesges R, Harmon K, Grindstaff P, Ramsey L, Bullen D, et al. Effects of ingesting supplements designed to promote lean tissue accretion on body composition during resistance training. Int J Sports Nutr. 1996;6(3):234–46.

    CAS  Google Scholar 

  26. Kreider RB. Effects of creatine supplementation on performance and training adaptations. Mol Cell Biochem. 2003;244(1–2):89–94.

    Article  CAS  PubMed  Google Scholar 

  27. Poortmans JR, Francaux M. Adverse effects of creatine supplementation: fact or fiction? Sports Med. 2000;30(3):155–70.

    Article  CAS  PubMed  Google Scholar 

  28. Volek JS, Rawson ES. Scientific basis and practical aspects of creatine supplementation for athletes. Nutrition. 2004;20(7–8):609–14.

    Article  CAS  PubMed  Google Scholar 

  29. Snow RJ, Murphy RM. Factors influencing creatine loading into human skeletal muscle. Exerc Sports Sci Rev. 2003;31(3):154–8.

    Article  Google Scholar 

  30. Persky AM, Brazeau GA, Hochhaus G. Pharmacokinetics of the dietary supplement creatine. Clin Pharmacokinet. 2003;42(6):557–74.

    Article  CAS  PubMed  Google Scholar 

  31. Persky AM, Brazeau GA. Clinical pharmacology of the dietary supplement creatine monohydrate. Pharmacol Rev. 2001;53(2):161–76.

    CAS  PubMed  Google Scholar 

  32. Wyss M, Schulze A. Health implications of creatine: can oral creatine supplementation protect against neurological and atherosclerotic disease? Neuroscience. 2002;112(2):243–60.

    Article  CAS  PubMed  Google Scholar 

  33. Volek JSKW. Creatine supplementation: its effect on human muscular performance and body composition. J Strength Cond Res. 1996;10:198–203.

    Google Scholar 

  34. Casey A, Greenhaff PL. Does dietary creatine supplementation play a role in skeletal muscle metabolism and performance? Am J Physiol. 2000;72(2 Suppl):607S–17.

    CAS  Google Scholar 

  35. Dempsey RL, Mazzone MF, Meurer LN. Does oral creatine supplementation improve strength? A meta-analysis. J Fam Pract. 2002;51(11):945–51.

    PubMed  Google Scholar 

  36. Rawson ES, Volek JS. Effects of creatine supplementation and resistance training on muscle strength and weightlifting performance. J Strength Cond Res. 2003;17(4):822–31.

    PubMed  Google Scholar 

  37. Kreider RBDW, Greenwood M, Parise G, Payne E, Tarnopolsky MA. Effects of creatine serum on muscle creatine and phosphagen levels. J Exerc Physiol Online. 2003;6(4):24–33.

    Google Scholar 

  38. Farquhar WB, Zambraski EJ. Effects of creatine use on the athlete's kidney. Curr Sports Med Rep. 2002;1(2):103–6.

    Article  PubMed  Google Scholar 

  39. Lemon PW. Dietary creatine supplementation and exercise performance: why inconsistent results? Can J Appl Physiol. 2002;27(6):663–81.

    Article  CAS  PubMed  Google Scholar 

  40. Steenge GR, Simpson EJ, Greenhaff PL. Protein- and carbohydrate-induced augmentation of whole body creatine retention in humans. J Appl Physiol. 2000;89(3):1165–71.

    CAS  PubMed  Google Scholar 

  41. Saks VA, Dzhaliashvili IV, Konorev EA, Strumia E. Molecular and cellular aspects of the cardioprotective mechanism of phosphocreatine. Biokhimiia. 1992;57(12):1763–84.

    CAS  PubMed  Google Scholar 

  42. Peeters BMLC, Mayhew JL. Effect of oral creatine monohydrate and creatine phosphate supplementation on maximal strength indices, body composition and blood pressure. J Strength Cond Res. 1998;13:3–9.

    Google Scholar 

  43. Guimbal C, Kilimann MW. A Na(+)-dependent creatine transporter in rabbit brain, muscle, heart, and kidney. cDNA cloning and functional expression. J Biol Chem. 1993;268(12):8418–21.

    CAS  PubMed  Google Scholar 

  44. Haughland RBCD. Insulin effects on creatine transport in skeletal muscle. Proc Soc Exp Biol Med. 1975;148:1–4.

    Article  Google Scholar 

  45. Odoom JE, Kemp GJ, Radda GK. The regulation of total creatine content in a myoblast cell line. Mol Cell Biochem. 1996;158(2):179–88.

    Article  CAS  PubMed  Google Scholar 

  46. Bennett SE, Bevington A, Walls J. Regulation of intracellular creatine in erythrocytes and myoblasts: influence of uraemia and inhibition of Na, K-ATPase. Cell Biochem Funct. 1994;12(2):99–106.

    Article  CAS  PubMed  Google Scholar 

  47. Gerber GB, Gerber G, Koszalka TR, Emmel VM. Creatine metabolism in vitamin E deficiency in the rat. Am J Physiol. 1962;202:453–60.

    CAS  PubMed  Google Scholar 

  48. Vandenberghe K, Gillis N, Van Leemputte M, Van Hecke P, Vanstapel F, Hespel P. Caffeine counteracts the ergogenic action of muscle creatine loading. J Appl Physiol. 1996;80(2):452–7.

    CAS  PubMed  Google Scholar 

  49. Loike JD, Somes M, Silverstein SC. Creatine uptake, metabolism, and efflux in human monocytes and macrophages. Am J Physiol. 1986;251(1 Pt 1):C128–35.

    CAS  PubMed  Google Scholar 

  50. Moller A, Hamprecht B. Creatine transport in cultured cells of rat and mouse brain. J Neurochem. 1989;52(2):544–50.

    Article  CAS  PubMed  Google Scholar 

  51. Green AL, Simpson EJ, Littlewood JJ, Macdonald IA, Greenhaff PL. Carbohydrate ingestion augments creatine retention during creatine feeding in humans. Acta Physiol Scand. 1996;158(2):195–202.

    Article  CAS  PubMed  Google Scholar 

  52. Green AL, Hultman E, Macdonald IA, Sewell DA, Greenhaff PL. Carbohydrate ingestion augments skeletal muscle creatine accumulation during creatine supplementation in humans. Am J Physiol. 1996;271(5 Pt 1):E821–6.

    CAS  PubMed  Google Scholar 

  53. Robinson TM, Sewell DA, Hultman E, Greenhaff PL. Role of submaximal exercise in promoting creatine and glycogen accumulation in human skeletal muscle. J Appl Physiol. 1999;87(2):598–604.

    CAS  PubMed  Google Scholar 

  54. Greenwood M, Kreider RB, Earnest C, Rasmussen C, Almada A. Differences in creatine retention among three nutritional formulations of oral creatine supplements. J Exerc Physiol Online. 2003;6:37–43.

    Google Scholar 

  55. Preen D, Dawson B, Goodman C, Beilby J, Ching S. Creatine supplementation: a comparison of loading and maintenance protocols on creatine uptake by human skeletal muscle. Int J Sports Nutr Exerc Metab. 2003;13(1):97–111.

    CAS  Google Scholar 

  56. Cribb PJ, Williams AD, Stathis CG, Carey MF, Hayes A. Effects of whey isolate, creatine, and resistance training on muscle hypertrophy. Med Sci Sports Exerc. 2007;39(2):298–307.

    Article  CAS  PubMed  Google Scholar 

  57. Burke DG, Chilibeck PD, Davidson KS, Candow DG, Farthing J, Smith-Palmer T. The effect of whey protein supplementation with and without creatine monohydrate combined with resistance training on lean tissue mass and muscle strength. Int J Sports Nutr Exerc Metab. 2001;11(3):349–64.

    CAS  Google Scholar 

  58. Tarnopolsky MA, Parise G, Yardley NJ, Ballantyne CS, Olatinji S, Phillips SM. Creatine-dextrose and protein-dextrose induce similar strength gains during training. Med Sci Sports Exerc. 2001;33(12):2044–52.

    Article  CAS  PubMed  Google Scholar 

  59. Stout JEJ, Noonan D, Moore G, Cullen D. Effects of 8 weeks of creatine supplementation on exercise performance and fat-free weight in football players during training. Nutr Res. 1999;19(2):217–25.

    Article  CAS  Google Scholar 

  60. Cribb PJ, Hayes A. Effects of supplement timing and resistance exercise on skeletal muscle hypertrophy. Med Sci Sports Exerc. 2006;38(11):1918–25.

    Article  PubMed  Google Scholar 

  61. Chilibeck PD, Stride D, Farthing JP, Burke DG. Effect of creatine ingestion after exercise on muscle thickness in males and females. Med Sci Sports Exerc. 2004;36(10):1781–8.

    Article  CAS  PubMed  Google Scholar 

  62. Greenwood MGLKR, Rasmussen C, Almada A, Earnest C. D-pinitol augments whole body creatine retention in man. J Exerc Physiol Online. 2001;4:41–7.

    Google Scholar 

  63. Bates SH, Jones RB, Bailey CJ. Insulin-like effect of pinitol. Br J Pharmacol. 2000;130(8):1944–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Kerksick CM, Wilborn CD, Campbell WI, Harvey TM, Marcello BM, Roberts MD, et al. The effects of creatine monohydrate supplementation with and without D-pinitol on resistance training adaptations. J Strength Cond Res. 2009;23(9):2673–82.

    Article  PubMed  Google Scholar 

  65. Estrada DE, Ewart HS, Tsakiridis T, Volchuk A, Ramlal T, Tritschler H, et al. Stimulation of glucose uptake by the natural coenzyme alpha-lipoic acid/thioctic acid: participation of elements of the insulin signaling pathway. Diabetes. 1996;45(12):1798–804.

    Article  CAS  PubMed  Google Scholar 

  66. Kishi Y, Schmelzer JD, Yao JK, Zollman PJ, Nickander KK, Tritschler HJ, et al. Alpha-lipoic acid: effect on glucose uptake, sorbitol pathway, and energy metabolism in experimental diabetic neuropathy. Diabetes. 1999;48(10):2045–51.

    Article  CAS  PubMed  Google Scholar 

  67. Burke DG, Chilibeck PD, Parise G, Tarnopolsky MA, Candow DG. Effect of alpha-lipoic acid combined with creatine monohydrate on human skeletal muscle creatine and phosphagen concentration. Int J Sports Nutr Exerc Metab. 2003;13(3):294–302.

    CAS  Google Scholar 

  68. Jäger RKI, Purpura M, Harris R, Ribnicky D, Pischel I. The effect of Russian tarragon (Artemisia dracunculus L.) on the plasma creatine concentration with creatine monohydrate administration. J Int Soc Sports Nutr. 2008;5 Suppl 1:4.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Oliver JM, Jagim AR, Pischel I, Jager R, Purpura M, Sanchez A, et al. Effects of short-term ingestion of russian tarragon prior to creatine monohydrate supplementation on whole body and muscle creatine retention and anaerobic sprint capacity: a preliminary investigation. J Int Soc Sports Nutr. 2014;11(1):6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  70. Jager R, Harris RC, Purpura M, Francaux M. Comparison of new forms of creatine in raising plasma creatine levels. J Int Soc Sports Nutr. 2007;4:17.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Jager R, Metzger J, Lautmann K, Shushakov V, Purpura M, Geiss KR, et al. The effects of creatine pyruvate and creatine citrate on performance during high intensity exercise. J Int Soc Sports Nutr. 2008;5:4.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  72. Eckerson JM, Stout JR, Moore GA, Stone NJ, Iwan KA, Gebauer AN, et al. Effect of creatine phosphate supplementation on anaerobic working capacity and body weight after two and six days of loading in men and women. J Strength Cond Res. 2005;19(4):756–63.

    PubMed  Google Scholar 

  73. Jagim AR, Oliver JM, Sanchez A, Galvan E, Fluckey J, Riechman S, et al. A buffered form of creatine does not promote greater changes in muscle creatine content, body composition, or training adaptations than creatine monohydrate. J Int Soc Sports Nutr. 2012;9(1):43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Herda TJ, Beck TW, Ryan ED, Smith AE, Walter AA, Hartman MJ, et al. Effects of creatine monohydrate and polyethylene glycosylated creatine supplementation on muscular strength, endurance, and power output. J Strength Cond Res. 2009;23(3):818–26.

    Article  PubMed  Google Scholar 

  75. Camic CL, Hendrix CR, Housh TJ, Zuniga JM, Mielke M, Johnson GO, et al. The effects of polyethylene glycosylated creatine supplementation on muscular strength and power. J Strength Cond Res. 2010;24(12):3343–51.

    Article  PubMed  Google Scholar 

  76. Spillane M, Schoch R, Cooke M, Harvey T, Greenwood M, Kreider R, et al. The effects of creatine ethyl ester supplementation combined with heavy resistance training on body composition, muscle performance, and serum and muscle creatine levels. J Int Soc Sports Nutr. 2009;6:6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  77. Giese MW, Lecher CS. Non-enzymatic cyclization of creatine ethyl ester to creatinine. Biochem Biophys Res Commun. 2009;388(2):252–5.

    Article  CAS  PubMed  Google Scholar 

  78. Katseres NS, Reading DW, Shayya L, Dicesare JC, Purser GH. Non-enzymatic hydrolysis of creatine ethyl ester. Biochem Biophys Res Commun. 2009;386(2):363–7.

    Article  CAS  PubMed  Google Scholar 

  79. Jentjens RL, Moseley L, Waring RH, Harding LK, Jeukendrup AE. Oxidation of combined ingestion of glucose and fructose during exercise. J Appl Physiol. 2004;96(4):1277–84.

    Article  CAS  PubMed  Google Scholar 

  80. Astorino TA, Roberson DW. Efficacy of acute caffeine ingestion for short-term high-intensity exercise performance: a systematic review. J Strength Cond Res. 2010;24(1):257–65.

    Article  PubMed  Google Scholar 

  81. Astorino TA, Cottrell T, Lozano AT, Aburto-Pratt K, Duhon J. Increases in cycling performance in response to caffeine ingestion are repeatable. Nutr Res. 2012;32(2):78–84.

    Article  CAS  PubMed  Google Scholar 

  82. Jeukendrup AE. Nutrition for endurance sports: marathon, triathlon, and road cycling. J Sports Sci. 2011;29 Suppl 1:S91–9.

    Article  PubMed  Google Scholar 

  83. MacDougall JD, Ray S, Sale DG, McCartney N, Lee P, Garner S. Muscle substrate utilization and lactate production. Can J Appl Physiol. 1999;24(3):209–15.

    Article  CAS  PubMed  Google Scholar 

  84. Robergs RA, Pearson DR, Costill DL, Fink WJ, Pascoe DD, Benedict MA, et al. Muscle glycogenolysis during differing intensities of weight-resistance exercise. J Appl Physiol. 1991;70(4):1700–6.

    CAS  PubMed  Google Scholar 

  85. Tesch PAP-SL, Yström L, Castro M, Dudley G. Skeletal muscle glycogen loss evoked by resistance exercise. J Strength Cond Res. 1998;12(2):67–73.

    Google Scholar 

  86. Haff GG, Koch AJ, Potteiger JA, Kuphal KE, Magee LM, Green SB, et al. Carbohydrate supplementation attenuates muscle glycogen loss during acute bouts of resistance exercise. Int J Sports Nutr Exerc Metab. 2000;10(3):326–39.

    CAS  Google Scholar 

  87. Sherman WM, Brodowicz G, Wright DA, Allen WK, Simonsen J, Dernbach A. Effects of 4 h preexercise carbohydrate feedings on cycling performance. Med Sci Sports Exerc. 1989;21(5):598–604.

    Article  CAS  PubMed  Google Scholar 

  88. Ivy JL, Goforth Jr HW, Damon BM, McCauley TR, Parsons EC, Price TB. Early postexercise muscle glycogen recovery is enhanced with a carbohydrate-protein supplement. J Appl Physiol. 2002;93(4):1337–44.

    Article  CAS  PubMed  Google Scholar 

  89. Fairchild TJ, Fletcher S, Steele P, Goodman C, Dawson B, Fournier PA. Rapid carbohydrate loading after a short bout of near maximal-intensity exercise. Med Sci Sports Exerc. 2002;34(6):980–6.

    Article  PubMed  Google Scholar 

  90. Bussau VA, Fairchild TJ, Rao A, Steele P, Fournier PA. Carbohydrate loading in human muscle: an improved 1 day protocol. Eur J Appl Physiol. 2002;87(3):290–5.

    Article  CAS  PubMed  Google Scholar 

  91. Hawley JA, Schabort EJ, Noakes TD, Dennis SC. Carbohydrate-loading and exercise performance. An update. Sports Med. 1997;24(2):73–81.

    Article  CAS  PubMed  Google Scholar 

  92. Burke LM, Hawley JA, Schabort EJ, St Clair Gibson A, Mujika I, Noakes TD. Carbohydrate loading failed to improve 100-km cycling performance in a placebo-controlled trial. J Appl Physiol. 2000;88(4):1284–90.

    CAS  PubMed  Google Scholar 

  93. Burke LM, Hawley JA, Wong SH, Jeukendrup AE. Carbohydrates for training and competition. J Sports Sci. 2011;29 Suppl 1:S17–27.

    Article  PubMed  Google Scholar 

  94. Betts JA, Williams C. Short-term recovery from prolonged exercise: exploring the potential for protein ingestion to accentuate the benefits of carbohydrate supplements. Sports Med. 2010;40(11):941–59.

    Article  PubMed  Google Scholar 

  95. Burke LM. Fueling strategies to optimize performance: training high or training low? Scand J Med Sci Sports. 2010;20 Suppl 2:48–58.

    Article  PubMed  Google Scholar 

  96. Cox GR, Clark SA, Cox AJ, Halson SL, Hargreaves M, Hawley JA, et al. Daily training with high carbohydrate availability increases exogenous carbohydrate oxidation during endurance cycling. J Appl Physiol. 2010;109(1):126–34.

    Article  CAS  PubMed  Google Scholar 

  97. Jeukendrup AE. Carbohydrate intake during exercise and performance. Nutrition. 2004;20(7–8):669–77.

    Article  CAS  PubMed  Google Scholar 

  98. Smith-Ryan AEAJ. Sport nutrition & performance enhancing supplements. Linus Books; 2013.

    Google Scholar 

  99. Rodriguez NR, DiMarco NM, Langley S, American Dietetic Association, Dietitians of Canada, American College of Sports Medicine, et al. Position of the American Dietetic Association, Dietitians of Canada, and the American College of Sports Medicine: nutrition and athletic performance. J Am Diet Assoc. 2009;109(3):509–27.

    Article  PubMed  CAS  Google Scholar 

  100. Slater G, Phillips SM. Nutrition guidelines for strength sports: sprinting, weightlifting, throwing events, and bodybuilding. J Sports Sci. 2011;29 Suppl 1:S67–77.

    Article  PubMed  Google Scholar 

  101. Helms ER, Aragon AA, Fitschen PJ. Evidence-based recommendations for natural bodybuilding contest preparation: nutrition and supplementation. J Int Soc Sports Nutr. 2014;11:20.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  102. Zehnder M, Muelli M, Buchli R, Kuehne G, Boutellier U. Further glycogen decrease during early recovery after eccentric exercise despite a high carbohydrate intake. Eur J Nutr. 2004;43(3):148–59.

    Article  CAS  PubMed  Google Scholar 

  103. Coyle EF. Substrate utilization during exercise in active people. Am J Clin Nutr. 1995;61(4 Suppl):968S–79.

    CAS  PubMed  Google Scholar 

  104. Foster C, Costill DL, Fink WJ. Effects of preexercise feedings on endurance performance. Med Sci Sports. 1979;11(1):1–5.

    CAS  PubMed  Google Scholar 

  105. Chryssanthopoulos C, Williams C. Pre-exercise carbohydrate meal and endurance running capacity when carbohydrates are ingested during exercise. Int J Sports Med. 1997;18(7):543–8.

    Article  CAS  PubMed  Google Scholar 

  106. Moore LJ, Midgley AW, Thurlow S, Thomas G, Mc Naughton LR. Effect of the glycaemic index of a pre-exercise meal on metabolism and cycling time trial performance. J Sci Med Sports. 2010;13(1):182–8.

    Article  Google Scholar 

  107. Donaldson CM, Perry TL, Rose MC. Glycemic index and endurance performance. Int J Sports Nutr Exerc Metab. 2010;20(2):154–65.

    CAS  Google Scholar 

  108. Karelis AD, Smith JW, Passe DH, Peronnet F. Carbohydrate administration and exercise performance: what are the potential mechanisms involved? Sports Med. 2010;40(9):747–63.

    Article  PubMed  Google Scholar 

  109. Pfeiffer B, Stellingwerff T, Hodgson AB, Randell R, Pottgen K, Res P, et al. Nutritional intake and gastrointestinal problems during competitive endurance events. Med Sci Sports Exerc. 2012;44(2):344–51.

    Article  CAS  PubMed  Google Scholar 

  110. Burke LM, Claassen A, Hawley JA, Noakes TD. Carbohydrate intake during prolonged cycling minimizes effect of glycemic index of preexercise meal. J Appl Physiol. 1998;85(6):2220–6.

    CAS  PubMed  Google Scholar 

  111. Chen YJ, Wong SH, Chan CO, Wong CK, Lam CW, Siu PM. Effects of glycemic index meal and CHO-electrolyte drink on cytokine response and run performance in endurance athletes. J Sci Med Sports. 2009;12(6):697–703.

    Article  CAS  Google Scholar 

  112. Wong SH, Chan OW, Chen YJ, Hu HL, Lam CW, Chung PK. Effect of preexercise glycemic-index meal on running when CHO-electrolyte solution is consumed during exercise. Int J Sports Nutr Exerc Metab. 2009;19(3):222–42.

    CAS  Google Scholar 

  113. Phillips SM, Sproule J, Turner AP. Carbohydrate ingestion during team games exercise: current knowledge and areas for future investigation. Sports Med. 2011;41(7):559–85.

    Article  PubMed  Google Scholar 

  114. Jentjens RL, Underwood K, Achten J, Currell K, Mann CH, Jeukendrup AE. Exogenous carbohydrate oxidation rates are elevated after combined ingestion of glucose and fructose during exercise in the heat. J Appl Physiol. 2006;100(3):807–16.

    Article  CAS  PubMed  Google Scholar 

  115. Pfeiffer B, Cotterill A, Grathwohl D, Stellingwerff T, Jeukendrup AE. The effect of carbohydrate gels on gastrointestinal tolerance during a 16-km run. Int J Sports Nutr Exerc Metab. 2009;19(5):485–503.

    CAS  Google Scholar 

  116. Pfeiffer B, Stellingwerff T, Zaltas E, Jeukendrup AE. Oxidation of solid versus liquid CHO sources during exercise. Med Sci Sports Exerc. 2010;42(11):2030–7.

    Article  CAS  PubMed  Google Scholar 

  117. Rowlands DS, Thorburn MS, Thorp RM, Broadbent S, Shi X. Effect of graded fructose coingestion with maltodextrin on exogenous 14C-fructose and 13C-glucose oxidation efficiency and high-intensity cycling performance. J Appl Physiol. 2008;104(6):1709–19.

    Article  CAS  PubMed  Google Scholar 

  118. Pfeiffer B, Stellingwerff T, Zaltas E, Hodgson AB, Jeukendrup AE. Carbohydrate oxidation from a drink during running compared with cycling exercise. Med Sci Sports Exerc. 2011;43(2):327–34.

    Article  CAS  PubMed  Google Scholar 

  119. Currell K, Jeukendrup AE. Superior endurance performance with ingestion of multiple transportable carbohydrates. Med Sci Sports Exerc. 2008;40(2):275–81.

    Article  CAS  PubMed  Google Scholar 

  120. Triplett D, Doyle JA, Rupp JC, Benardot D. An isocaloric glucose-fructose beverage’s effect on simulated 100-km cycling performance compared with a glucose-only beverage. Int J Sports Nutr Exerc Metab. 2010;20(2):122–31.

    CAS  Google Scholar 

  121. Piehl Aulin K, Soderlund K, Hultman E. Muscle glycogen resynthesis rate in humans after supplementation of drinks containing carbohydrates with low and high molecular masses. Eur J Appl Physiol. 2000;81(4):346–51.

    Article  CAS  PubMed  Google Scholar 

  122. Pedersen DJ, Lessard SJ, Coffey VG, Churchley EG, Wootton AM, Ng T, et al. High rates of muscle glycogen resynthesis after exhaustive exercise when carbohydrate is coingested with caffeine. J Appl Physiol. 2008;105(1):7–13.

    Article  CAS  PubMed  Google Scholar 

  123. Ivy JL, Katz AL, Cutler CL, Sherman WM, Coyle EF. Muscle glycogen synthesis after exercise: effect of time of carbohydrate ingestion. J Appl Physiol. 1988;64(4):1480–5.

    CAS  PubMed  Google Scholar 

  124. Samadi A, Gaeini AA, Kordi MR, Rahimi M, Rahnama N, Bambaeichi E. Effect of various ratios of carbohydrate-protein supplementation on resistance exercise-induced muscle damage. J Sports Med Phys Fitness. 2012;52(2):151–7.

    CAS  PubMed  Google Scholar 

  125. Zawadzki KM, Yaspelkis 3rd BB, Ivy JL. Carbohydrate-protein complex increases the rate of muscle glycogen storage after exercise. J Appl Physiol. 1992;72(5):1854–9.

    CAS  PubMed  Google Scholar 

  126. Williams M, Raven PB, Fogt DL, Ivy JL. Effects of recovery beverages on glycogen restoration and endurance exercise performance. J Strength Cond Res. 2003;17(1):12–9.

    PubMed  Google Scholar 

  127. Berardi JM, Price TB, Noreen EE, Lemon PW. Postexercise muscle glycogen recovery enhanced with a carbohydrate-protein supplement. Med Sci Sports Exerc. 2006;38(6):1106–13.

    Article  CAS  PubMed  Google Scholar 

  128. van Loon LJ, Saris WH, Kruijshoop M, Wagenmakers AJ. Maximizing postexercise muscle glycogen synthesis: carbohydrate supplementation and the application of amino acid or protein hydrolysate mixtures. Am J Clin Nutr. 2000;72(1):106–11.

    PubMed  Google Scholar 

  129. van Loon LJ, Saris WH, Verhagen H, Wagenmakers AJ. Plasma insulin responses after ingestion of different amino acid or protein mixtures with carbohydrate. Am J Clin Nutr. 2000;72(1):96–105.

    PubMed  Google Scholar 

  130. Taylor C, Higham D, Close GL, Morton JP. The effect of adding caffeine to postexercise carbohydrate feeding on subsequent high-intensity interval-running capacity compared with carbohydrate alone. Int J Sports Nutr Exerc Metab. 2011;21(5):410–6.

    CAS  Google Scholar 

  131. Nelson AG, Arnall DA, Kokkonen J, Day R, Evans J. Muscle glycogen supercompensation is enhanced by prior creatine supplementation. Med Sci Sports Exerc. 2001;33(7):1096–100.

    Article  CAS  PubMed  Google Scholar 

  132. Op ‘t Eijnde B, Urso B, Richter EA, Greenhaff PL, Hespel P. Effect of oral creatine supplementation on human muscle GLUT4 protein content after immobilization. Diabetes. 2001;50(1):18–23.

    Article  PubMed  Google Scholar 

  133. Derave W, Eijnde BO, Verbessem P, Ramaekers M, Van Leemputte M, Richter EA, et al. Combined creatine and protein supplementation in conjunction with resistance training promotes muscle GLUT-4 content and glucose tolerance in humans. J Appl Physiol. 2003;94(5):1910–6.

    Article  CAS  PubMed  Google Scholar 

  134. van Loon LJ, Murphy R, Oosterlaar AM, Cameron-Smith D, Hargreaves M, Wagenmakers AJ, et al. Creatine supplementation increases glycogen storage but not GLUT-4 expression in human skeletal muscle. Clin Sci. 2004;106(1):99–106.

    Article  PubMed  Google Scholar 

  135. Francaux M, Poortmans JR. Effects of training and creatine supplement on muscle strength and body mass. Eur J Appl Physiol Occup Physiol. 1999;80(2):165–8.

    Article  CAS  PubMed  Google Scholar 

  136. Low SY, Rennie MJ, Taylor PM. Modulation of glycogen synthesis in rat skeletal muscle by changes in cell volume. J Physiol. 1996;495(Pt 2):299–303.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  137. Rasmussen BB, Phillips SM. Contractile and nutritional regulation of human muscle growth. Exerc Sports Sci Rev. 2003;31(3):127–31.

    Article  Google Scholar 

  138. Phillips SM, Tipton KD, Aarsland A, Wolf SE, Wolfe RR. Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Physiol. 1997;273(1 Pt 1):E99–107.

    CAS  PubMed  Google Scholar 

  139. Yarasheski KE, Pak-Loduca J, Hasten DL, Obert KA, Brown MB, Sinacore DR. Resistance exercise training increases mixed muscle protein synthesis rate in frail women and men ≥76 yr old. Am J Physiol. 1999;277(1 Pt 1):E118–25.

    CAS  PubMed  Google Scholar 

  140. Rennie MJ, Wackerhage H, Spangenburg EE, Booth FW. Control of the size of the human muscle mass. Annu Rev Physiol. 2004;66:799–828.

    Article  CAS  PubMed  Google Scholar 

  141. Moore DR, Tang JE, Burd NA, Rerecich T, Tarnopolsky MA, Phillips SM. Differential stimulation of myofibrillar and sarcoplasmic protein synthesis with protein ingestion at rest and after resistance exercise. J Physiol. 2009;587(Pt 4):897–904.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  142. Rasmussen BB, Tipton KD, Miller SL, Wolf SE, Wolfe RR. An oral essential amino acid-carbohydrate supplement enhances muscle protein anabolism after resistance exercise. J Appl Physiol. 2000;88(2):386–92.

    CAS  PubMed  Google Scholar 

  143. Borsheim E, Cree MG, Tipton KD, Elliott TA, Aarsland A, Wolfe RR. Effect of carbohydrate intake on net muscle protein synthesis during recovery from resistance exercise. J Appl Physiol. 2004;96(2):674–8.

    Article  CAS  PubMed  Google Scholar 

  144. Staples AW, Burd NA, West DW, Currie KD, Atherton PJ, Moore DR, et al. Carbohydrate does not augment exercise-induced protein accretion versus protein alone. Med Sci Sports Exerc. 2011;43(7):1154–61.

    Article  CAS  PubMed  Google Scholar 

  145. Roy BD, Tarnopolsky MA, MacDougall JD, Fowles J, Yarasheski KE. Effect of glucose supplement timing on protein metabolism after resistance training. J Appl Physiol. 1997;82(6):1882–8.

    CAS  PubMed  Google Scholar 

  146. Baty JJ, Hwang H, Ding Z, Bernard JR, Wang B, Kwon B, et al. The effect of a carbohydrate and protein supplement on resistance exercise performance, hormonal response, and muscle damage. J Strength Cond Res. 2007;21(2):321–9.

    PubMed  Google Scholar 

  147. Tarpenning KM, Wiswell RA, Hawkins SA, Marcell TJ. Influence of weight training exercise and modification of hormonal response on skeletal muscle growth. J Sci Med Sports. 2001;4(4):431–46.

    Article  CAS  Google Scholar 

  148. Tipton KD, Rasmussen BB, Miller SL, Wolf SE, Owens-Stovall SK, Petrini BE, et al. Timing of amino acid-carbohydrate ingestion alters anabolic response of muscle to resistance exercise. Am J Physiol Endocrinol Metab. 2001;281(2):E197–206.

    CAS  PubMed  Google Scholar 

  149. Miller SL, Tipton KD, Chinkes DL, Wolf SE, Wolfe RR. Independent and combined effects of amino acids and glucose after resistance exercise. Med Sci Sports Exerc. 2003;35(3):449–55.

    Article  CAS  PubMed  Google Scholar 

  150. Borsheim E, Aarsland A, Wolfe RR. Effect of an amino acid, protein, and carbohydrate mixture on net muscle protein balance after resistance exercise. Int J Sports Nutr Exerc Metab. 2004;14(3):255–71.

    CAS  Google Scholar 

  151. Elliot TA, Cree MG, Sanford AP, Wolfe RR, Tipton KD. Milk ingestion stimulates net muscle protein synthesis following resistance exercise. Med Sci Sports Exerc. 2006;38(4):667–74.

    Article  CAS  PubMed  Google Scholar 

  152. Tipton KD. Role of protein and hydrolysates before exercise. Int J Sports Nutr Exerc Metab. 2007;17(Suppl):S77–86.

    CAS  Google Scholar 

  153. Moore DR, Atherton PJ, Rennie MJ, Tarnopolsky MA, Phillips SM. Resistance exercise enhances mTOR and MAPK signalling in human muscle over that seen at rest after bolus protein ingestion. Acta Physiol. 2011;201(3):365–72.

    Article  CAS  Google Scholar 

  154. Dickinson JM, Fry CS, Drummond MJ, Gundermann DM, Walker DK, Glynn EL, et al. Mammalian target of rapamycin complex 1 activation is required for the stimulation of human skeletal muscle protein synthesis by essential amino acids. J Nutr. 2011;141(5):856–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  155. Karlsson HK, Nilsson PA, Nilsson J, Chibalin AV, Zierath JR, Blomstrand E. Branched-chain amino acids increase p70S6k phosphorylation in human skeletal muscle after resistance exercise. Am J Physiol Endocrinol Metab. 2004;287(1):E1–7.

    Article  CAS  PubMed  Google Scholar 

  156. Ferguson-Stegall L, McCleave EL, Ding Z, Doerner 3rd PG, Wang B, Liao YH, et al. Postexercise carbohydrate-protein supplementation improves subsequent exercise performance and intracellular signaling for protein synthesis. J Strength Cond Res. 2011;25(5):1210–24.

    Article  PubMed  Google Scholar 

  157. Coffey VG, Moore DR, Burd NA, Rerecich T, Stellingwerff T, Garnham AP, et al. Nutrient provision increases signalling and protein synthesis in human skeletal muscle after repeated sprints. Eur J Appl Physiol. 2011;111(7):1473–83.

    Article  CAS  PubMed  Google Scholar 

  158. Breen L, Philp A, Witard OC, Jackman SR, Selby A, Smith K, et al. The influence of carbohydrate-protein co-ingestion following endurance exercise on myofibrillar and mitochondrial protein synthesis. J Physiol. 2011;589(Pt 16):4011–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  159. Ivy JL, Ding Z, Hwang H, Cialdella-Kam LC, Morrison PJ. Post exercise carbohydrate-protein supplementation: phosphorylation of muscle proteins involved in glycogen synthesis and protein translation. Amino Acids. 2008;35(1):89–97.

    Article  CAS  PubMed  Google Scholar 

  160. Ferguson-Stegall L, McCleave E, Ding Z, Doerner Iii PG, Liu Y, Wang B, et al. Aerobic exercise training adaptations are increased by postexercise carbohydrate-protein supplementation. J Nutr Metab. 2011;2011:623182.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  161. Creer A, Gallagher P, Slivka D, Jemiolo B, Fink W, Trappe S. Influence of muscle glycogen availability on ERK1/2 and Akt signaling after resistance exercise in human skeletal muscle. J Appl Physiol. 2005;99(3):950–6.

    Article  CAS  PubMed  Google Scholar 

  162. Kraemer WJ, Volek JS, Bush JA, Putukian M, Sebastianelli WJ. Hormonal responses to consecutive days of heavy-resistance exercise with or without nutritional supplementation. J Appl Physiol. 1998;85(4):1544–55.

    CAS  PubMed  Google Scholar 

  163. Williams AG, Ismail AN, Sharma A, Jones DA. Effects of resistance exercise volume and nutritional supplementation on anabolic and catabolic hormones. Eur J Appl Physiol. 2002;86(4):315–21.

    Article  CAS  PubMed  Google Scholar 

  164. Willoughby DF, Stout J, Wilborn C, Taylor L, Kerksick C, editor. Effects of heavy resistance training and proprietary whey Casein Leucine protein supplementation on serum and skeletal muscle IGF-1 levels and IGF-1 and MGF mRNA expression. Int Soc Sports Nutr; 2005.

    Google Scholar 

  165. Kraemer WJ, Spiering BA, Volek JS, Ratamess NA, Sharman MJ, Rubin MR, et al. Androgenic responses to resistance exercise: effects of feeding and L-carnitine. Med Sci Sports Exerc. 2006;38(7):1288–96.

    Article  CAS  PubMed  Google Scholar 

  166. West DW, Phillips SM. Associations of exercise-induced hormone profiles and gains in strength and hypertrophy in a large cohort after weight training. Eur J Appl Physiol. 2012;112(7):2693–702.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  167. Norton LE, Wilson GJ, Layman DK, Moulton CJ, Garlick PJ. Leucine content of dietary proteins is a determinant of postprandial skeletal muscle protein synthesis in adult rats. Nutr Metab. 2012;9(1):67.

    Article  CAS  Google Scholar 

  168. Katsanos CS, Kobayashi H, Sheffield-Moore M, Aarsland A, Wolfe RR. A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly. Am J Physiol Endocrinol Metab. 2006;291(2):E381–7.

    Article  CAS  PubMed  Google Scholar 

  169. Pasiakos SM, McClung HL, McClung JP, Margolis LM, Andersen NE, Cloutier GJ, et al. Leucine-enriched essential amino acid supplementation during moderate steady state exercise enhances postexercise muscle protein synthesis. Am J Clin Nutr. 2011;94(3):809–18.

    Article  CAS  PubMed  Google Scholar 

  170. Glynn EL, Fry CS, Drummond MJ, Timmerman KL, Dhanani S, Volpi E, et al. Excess leucine intake enhances muscle anabolic signaling but not net protein anabolism in young men and women. J Nutr. 2010;140(11):1970–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  171. Tipton KD, Elliott TA, Ferrando AA, Aarsland AA, Wolfe RR. Stimulation of muscle anabolism by resistance exercise and ingestion of leucine plus protein. Appl Physiol Nutr Metab. 2009;34(2):151–61.

    Article  CAS  PubMed  Google Scholar 

  172. Churchward-Venne TA, Burd NA, Mitchell CJ, West DW, Philp A, Marcotte GR, et al. Supplementation of a suboptimal protein dose with leucine or essential amino acids: effects on myofibrillar protein synthesis at rest and following resistance exercise in men. J Physiol. 2012;590(Pt 11):2751–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  173. Yang Y, Breen L, Burd NA, Hector AJ, Churchward-Venne TA, Josse AR, et al. Resistance exercise enhances myofibrillar protein synthesis with graded intakes of whey protein in older men. Br J Nutr. 2012;108(10):1780–8.

    Article  CAS  PubMed  Google Scholar 

  174. Churchward-Venne TA, Breen L, Di Donato DM, Hector AJ, Mitchell CJ, Moore DR, et al. Leucine supplementation of a low-protein mixed macronutrient beverage enhances myofibrillar protein synthesis in young men: a double-blind, randomized trial. Am J Clin Nutr. 2014;99(2):276–86.

    Article  CAS  PubMed  Google Scholar 

  175. Keisler BD, Armsey 2nd TD. Caffeine as an ergogenic aid. Curr Sports Med Rep. 2006;5(4):215–9.

    Article  PubMed  Google Scholar 

  176. Greer F, McLean C, Graham TE. Caffeine, performance, and metabolism during repeated Wingate exercise tests. J Appl Physiol. 1998;85(4):1502–8.

    CAS  PubMed  Google Scholar 

  177. Greer F, Friars D, Graham TE. Comparison of caffeine and theophylline ingestion: exercise metabolism and endurance. J Appl Physiol. 2000;89(5):1837–44.

    CAS  PubMed  Google Scholar 

  178. Desbrow B, Biddulph C, Devlin B, Grant GD, Anoopkumar-Dukie S, Leveritt MD. The effects of different doses of caffeine on endurance cycling time trial performance. J Sports Sci. 2012;30(2):115–20.

    Article  PubMed  Google Scholar 

  179. Homsi J, Walsh D, Nelson KA. Psychostimulants in supportive care. Support Care Cancer. 2000;8(5):385–97.

    Article  CAS  PubMed  Google Scholar 

  180. Hoffman BB. Adrenoreceptor-activating and other sympathomimetic drugs. In: Katzung BG, editor. Basic and clinical pharmacology. 8th ed. New York: The McGraw Hill Companies, Inc; 2001. p. 120–37.

    Google Scholar 

  181. Bell DG, Jacobs I, Ellerington K. Effect of caffeine and ephedrine ingestion on anaerobic exercise performance. Med Sci Sports Exerc. 2001;33(8):1399–403.

    Article  CAS  PubMed  Google Scholar 

  182. Jacobs I, Pasternak H, Bell DG. Effects of ephedrine, caffeine, and their combination on muscular endurance. Med Sci Sports Exerc. 2003;35(6):987–94.

    Article  CAS  PubMed  Google Scholar 

  183. Gillies H, Derman WE, Noakes TD, Smith P, Evans A, Gabriels G. Pseudoephedrine is without ergogenic effects during prolonged exercise. J Appl Physiol. 1996;81(6):2611–7.

    CAS  PubMed  Google Scholar 

  184. Hodges AN, Lynn BM, Bula JE, Donaldson MG, Dagenais MO, McKenzie DC. Effects of pseudoephedrine on maximal cycling power and submaximal cycling efficiency. Med Sci Sports Exerc. 2003;35(8):1316–9.

    Article  CAS  PubMed  Google Scholar 

  185. Dulloo AG. Ephedrine, xanthines and prostaglandin-inhibitors: actions and interactions in the stimulation of thermogenesis. Int J Obes Relat Metab Disord. 1993;17 Suppl 1:S35–40.

    CAS  PubMed  Google Scholar 

  186. Bell DG, Jacobs I. Combined caffeine and ephedrine ingestion improves run times of Canadian Forces Warrior Test. Aviat Space Environ Med. 1999;70(4):325–9.

    CAS  PubMed  Google Scholar 

  187. Bell DG, Jacobs I, Zamecnik J. Effects of caffeine, ephedrine and their combination on time to exhaustion during high-intensity exercise. Eur J Appl Physiol Occup Physiol. 1998;77(5):427–33.

    Article  CAS  PubMed  Google Scholar 

  188. Bell DG, McLellan TM, Sabiston CM. Effect of ingesting caffeine and ephedrine on 10-km run performance. Med Sci Sports Exerc. 2002;34(2):344–9.

    Article  CAS  PubMed  Google Scholar 

  189. Graham TE. Caffeine, coffee and ephedrine: impact on exercise performance and metabolism. Can J Appl Physiol. 2001;26:Suppl:S103–19.

    Article  PubMed  Google Scholar 

  190. Bell DG, Jacobs I, McLellan TM, Zamecnik J. Reducing the dose of combined caffeine and ephedrine preserves the ergogenic effect. Aviat Space Environ Med. 2000;71(4):415–9.

    CAS  PubMed  Google Scholar 

  191. Magkos F, Kavouras SA. Caffeine and ephedrine: physiological, metabolic and performance-enhancing effects. Sports Med. 2004;34(13):871–89.

    Article  PubMed  Google Scholar 

  192. Williams AD, Cribb PJ, Cooke MB, Hayes A. The effect of ephedra and caffeine on maximal strength and power in resistance-trained athletes. J Strength Cond Res. 2008;22(2):464–70.

    Article  PubMed  Google Scholar 

  193. Bicopoulos D, editor. AusDI: drug information for the healthcare professional. 2nd ed. Castle Hill: Pharmaceutical Care Information Services; 2002.

    Google Scholar 

  194. Carr AJ, Gore CJ, Dawson B. Induced alkalosis and caffeine supplementation: effects on 2,000-m rowing performance. Int J Sports Nutr Exerc Metab. 2011;21(5):357–64.

    CAS  Google Scholar 

  195. Kilding AE, Overton C, Gleave J. Effects of caffeine, sodium bicarbonate, and their combined ingestion on high-intensity cycling performance. Int J Sports Nutr Exerc Metab. 2012;22(3):175–83.

    CAS  Google Scholar 

  196. Lee CL, Cheng CF, Lee CJ, Kuo YH, Chang WD. Co-ingestion of caffeine and carbohydrate after meal does not improve performance at high-intensity intermittent sprints with short recovery times. Eur J Appl Physiol. 2014;114(7):1533–43.

    Article  CAS  PubMed  Google Scholar 

  197. Conger SA, Warren GL, Hardy MA, Millard-Stafford ML. Does caffeine added to carbohydrate provide additional ergogenic benefit for endurance? Int J Sports Nutr Exerc Metab. 2011;21(1):71–84.

    CAS  Google Scholar 

  198. Cooper R, Naclerio F, Allgrove J, Larumbe-Zabala E. Effects of a carbohydrate and caffeine gel on intermittent sprint performance in recreationally trained males. Eur J Sports Sci. 2014;14(4):353–61.

    Article  Google Scholar 

  199. Douroudos II, Fatouros IG, Gourgoulis V, Jamurtas AZ, Tsitsios T, Hatzinikolaou A, et al. Dose-related effects of prolonged NaHCO3 ingestion during high-intensity exercise. Med Sci Sports Exerc. 2006;38(10):1746–53.

    Article  CAS  PubMed  Google Scholar 

  200. Mc Naughton L, Thompson D. Acute versus chronic sodium bicarbonate ingestion and anaerobic work and power output. J Sports Med Phys Fitness. 2001;41(4):456–62.

    CAS  PubMed  Google Scholar 

  201. McNaughton L, Backx K, Palmer G, Strange N. Effects of chronic bicarbonate ingestion on the performance of high-intensity work. Eur J Appl Physiol Occup Physiol. 1999;80(4):333–6.

    Article  CAS  PubMed  Google Scholar 

  202. Mero AA, Keskinen KL, Malvela MT, Sallinen JM. Combined creatine and sodium bicarbonate supplementation enhances interval swimming. J Strength Cond Res. 2004;18(2):306–10.

    PubMed  Google Scholar 

  203. Barber JJ, McDermott AY, McGaughey KJ, Olmstead JD, Hagobian TA. Effects of combined creatine and sodium bicarbonate supplementation on repeated sprint performance in trained men. J Strength Cond Res. 2013;27(1):252–8.

    Article  PubMed  Google Scholar 

  204. Cribb PJ, Williams AD, Hayes A. A creatine-protein-carbohydrate supplement enhances responses to resistance training. Med Sci Sports Exerc. 2007;39(11):1960–8.

    Article  CAS  PubMed  Google Scholar 

  205. Chromiak JA, Smedley B, Carpenter W, Brown R, Koh YS, Lamberth JG, et al. Effect of a 10-week strength training program and recovery drink on body composition, muscular strength and endurance, and anaerobic power and capacity. Nutrition. 2004;20(5):420–7.

    Article  PubMed  Google Scholar 

  206. Villanueva MG, He J, Schroeder ET. Periodized resistance training with and without supplementation improve body composition and performance in older men. Eur J Appl Physiol. 2014;114(5):891–905.

    Article  CAS  PubMed  Google Scholar 

  207. Stone MH, Sanborn K, Smith LL, O'Bryant HS, Hoke T, Utter AC, et al. Effects of in-season (5 weeks) creatine and pyruvate supplementation on anaerobic performance and body composition in American football players. Int J Sports Nutr. 1999;9(2):146–65.

    CAS  Google Scholar 

  208. Selsby JT, DiSilvestro RA, Devor ST. Mg2 + −creatine chelate and a low-dose creatine supplementation regimen improve exercise performance. J Strength Cond Res. 2004;18(2):311–5.

    PubMed  Google Scholar 

  209. Jowko E, Ostaszewski P, Jank M, Sacharuk J, Zieniewicz A, Wilczak J, et al. Creatine and beta-hydroxy-beta-methylbutyrate (HMB) additively increase lean body mass and muscle strength during a weight-training program. Nutrition. 2001;17(7–8):558–66.

    Article  CAS  PubMed  Google Scholar 

  210. Crowe MJ, O'Connor DM, Lukins JE. The effects of beta-hydroxy-beta-methylbutyrate (HMB) and HMB/creatine supplementation on indices of health in highly trained athletes. Int J Sports Nutr Exerc Metab. 2003;13(2):184–97.

    CAS  Google Scholar 

  211. Hill CA, Harris R, Kim HJ, Boobis L, Sale C, Wise JA, editors. The effect of beta-alanine and creatine monohydrate supplementation on muscle composition and exercise performance. Am Coll Sports Med. 2005;37(5):S348 (Medicine and Science in Sports and Exercise).

    Google Scholar 

  212. Stout JR, Cramer JT, Mielke M, O'Kroy J, Torok DJ, Zoeller RF. Effects of twenty-eight days of beta-alanine and creatine monohydrate supplementation on the physical working capacity at neuromuscular fatigue threshold. J Strength Cond Res. 2006;20(4):928–31.

    PubMed  Google Scholar 

  213. Wilson JM, Fitschen PJ, Campbell B, Wilson GJ, Zanchi N, Taylor L, et al. International society of sports nutrition position stand: beta-hydroxy-beta-methylbutyrate (HMB). J Int Soc Sports Nutr. 2013;10(1):6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  214. Baier S, Johannsen D, Abumrad N, Rathmacher JA, Nissen S, Flakoll P. Year-long changes in protein metabolism in elderly men and women supplemented with a nutrition cocktail of beta-hydroxy-beta-methylbutyrate (HMB), L-arginine, and L-lysine. JPEN J Parenter Enteral Nutr. 2009;33(1):71–82.

    Article  CAS  PubMed  Google Scholar 

  215. Lowery RP, Joy JM, Rathmacher JA, Baier SM, Fuller J, Jr, Shelley MC, 2nd, et al. Interaction of beta-hydroxy-beta-methylbutyrate free acid (HMB-FA) and adenosine triphosphate (ATP) on muscle mass, strength, and power in resistance trained individuals. J Strength Cond Res. 2014.

    Google Scholar 

  216. Hoffman J, Ratamess N, Kang J, Mangine G, Faigenbaum A, Stout J. Effect of creatine and beta-alanine supplementation on performance and endocrine responses in strength/power athletes. Int J Sports Nutr Exerc Metab. 2006;16(4):430–46.

    CAS  Google Scholar 

  217. Hoffman JR, Ratamess NA, Tranchina CP, Rashti SL, Kang J, Faigenbaum AD. Effect of protein-supplement timing on strength, power, and body-composition changes in resistance-trained men. Int J Sports Nutr Exerc Metab. 2009;19(2):172–85.

    CAS  Google Scholar 

  218. Burk A, Timpmann S, Medijainen L, Vahi M, Oopik V. Time-divided ingestion pattern of casein-based protein supplement stimulates an increase in fat-free body mass during resistance training in young untrained men. Nutr Res. 2009;29(6):405–13.

    Article  CAS  PubMed  Google Scholar 

  219. Phillips SM, Hartman JW, Wilkinson SB. Dietary protein to support anabolism with resistance exercise in young men. J Am Coll Nutr. 2005;24(2):134S–9.

    Article  PubMed  Google Scholar 

  220. Tang JE, Manolakos JJ, Kujbida GW, Lysecki PJ, Moore DR, Phillips SM. Minimal whey protein with carbohydrate stimulates muscle protein synthesis following resistance exercise in trained young men. Appl Physiol Nutr Metab. 2007;32(6):1132–8.

    Article  CAS  PubMed  Google Scholar 

  221. Res PT, Groen B, Pennings B, Beelen M, Wallis GA, Gijsen AP, et al. Protein ingestion before sleep improves postexercise overnight recovery. Med Sci Sports Exerc. 2012;44(8):1560–9.

    Article  CAS  PubMed  Google Scholar 

  222. Andersen LL, Tufekovic G, Zebis MK, Crameri RM, Verlaan G, Kjaer M, et al. The effect of resistance training combined with timed ingestion of protein on muscle fiber size and muscle strength. Metab Clin Exp. 2005;54(2):151–6.

    Article  CAS  PubMed  Google Scholar 

  223. Kerksick CM, Rasmussen CJ, Lancaster SL, Magu B, Smith P, Melton C, et al. The effects of protein and amino acid supplementation on performance and training adaptations during ten weeks of resistance training. J Strength Cond Res. 2006;20(3):643–53.

    PubMed  Google Scholar 

  224. Ormsbee MJ, Mandler WK, Thomas DD, Ward EG, Kinsey AW, Simonavice E, et al. The effects of six weeks of supplementation with multi-ingredient performance supplements and resistance training on anabolic hormones, body composition, strength, and power in resistance-trained men. J Int Soc Sports Nutr. 2012;9(1):49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  225. Ormsbee MJ, Thomas DD, Mandler WK, Ward EG, Kinsey AW, Panton LB, et al. The effects of pre- and post-exercise consumption of multi-ingredient performance supplements on cardiovascular health and body fat in trained men after six weeks of resistance training: a stratified, randomized, double-blind study. Nutr Metab. 2013;10(1):39.

    Article  CAS  Google Scholar 

  226. Lowery RP, Joy JM, Dudeck JE, Oliveira de Souza E, McCleary SA, Wells S, et al. Effects of 8 weeks of Xpand(R) 2X pre workout supplementation on skeletal muscle hypertrophy, lean body mass, and strength in resistance trained males. J Int Soc Sports Nutr. 2013;10(1):44.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  227. Stout JR, Cramer JT, Zoeller RF, Torok D, Costa P, Hoffman JR, et al. Effects of beta-alanine supplementation on the onset of neuromuscular fatigue and ventilatory threshold in women. Amino Acids. 2007;32(3):381–6.

    Article  CAS  PubMed  Google Scholar 

  228. Zoeller RF, Stout JR, O'Kroy JA, Torok DJ, Mielke M. Effects of 28 days of beta-alanine and creatine monohydrate supplementation on aerobic power, ventilatory and lactate thresholds, and time to exhaustion. Amino Acids. 2007;33(3):505–10.

    Article  CAS  PubMed  Google Scholar 

  229. Mero AA, Hirvonen P, Saarela J, Hulmi JJ, Hoffman JR, Stout JR. Effect of sodium bicarbonate and beta-alanine supplementation on maximal sprint swimming. J Int Soc Sports Nutr. 2013;10(1):52.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  230. Bellinger PM, Howe ST, Shing CM, Fell JW. Effect of combined beta-alanine and sodium bicarbonate supplementation on cycling performance. Med Sci Sports Exerc. 2012;44(8):1545–51.

    Article  CAS  PubMed  Google Scholar 

  231. Sale C, Saunders B, Hudson S, Wise JA, Harris RC, Sunderland CD. Effect of beta-alanine plus sodium bicarbonate on high-intensity cycling capacity. Med Sci Sports Exerc. 2011;43(10):1972–8.

    CAS  PubMed  Google Scholar 

  232. Saunders B, Sale C, Harris RC, Sunderland C. Effect of sodium bicarbonate and Beta-alanine on repeated sprints during intermittent exercise performed in hypoxia. Int J Sports Nutr Exerc Metab. 2014;24(2):196–205.

    Article  CAS  Google Scholar 

  233. Hobson RM, Harris RC, Martin D, Smith P, Macklin B, Gualano B, et al. Effect of beta-alanine with and without sodium bicarbonate on 2,000-m rowing performance. Int J Sports Nutr Exerc Metab. 2013;23(5):480–7.

    CAS  Google Scholar 

  234. de Salles PV, Roschel H, de Jesus F, Sale C, Harris RC, Solis MY, et al. The ergogenic effect of beta-alanine combined with sodium bicarbonate on high-intensity swimming performance. Appl Physiol Nutr Metab. 2013;38(5):525–32.

    Article  CAS  Google Scholar 

  235. Ducker KJ, Dawson B, Wallman KE. Effect of beta alanine and sodium bicarbonate supplementation on repeated-sprint performance. J Strength Cond Res. 2013;27(12):3450–60.

    Article  PubMed  Google Scholar 

  236. Tobias G, Benatti FB, de Salles PV, Roschel H, Gualano B, Sale C, et al. Additive effects of beta-alanine and sodium bicarbonate on upper-body intermittent performance. Amino Acids. 2013;45(2):309–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  237. Ohtani M, Maruyama K, Suzuki S, Sugita M, Kobayashi K. Changes in hematological parameters of athletes after receiving daily dose of a mixture of 12 amino acids for one month during the middle- and long-distance running training. Biosci Biotechnol Biochem. 2001;65(2):348–55.

    Article  CAS  PubMed  Google Scholar 

  238. Ohtani M, Sugita M, Maruyama K. Amino acid mixture improves training efficiency in athletes. J Nutr. 2006;136(2):538S–43.

    CAS  PubMed  Google Scholar 

  239. Ohtani M, Maruyama K, Sugita M, Kobayashi K. Amino acid supplementation affects hematological and biochemical parameters in elite rugby players. Biosci Biotechnol Biochem. 2001;65(9):1970–6.

    Article  CAS  PubMed  Google Scholar 

  240. Antonio J, Sanders MS, Ehler LA, Uelmen J, Raether JB, Stout JR. Effects of exercise training and amino-acid supplementation on body composition and physical performance in untrained women. Nutrition. 2000;16(11–12):1043–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew B. Cooke BSc (Hons), PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cooke, M.B., Cribb, P.J. (2015). Effective Nutritional Supplement Combinations. In: Greenwood, M., Cooke, M., Ziegenfuss, T., Kalman, D., Antonio, J. (eds) Nutritional Supplements in Sports and Exercise. Springer, Cham. https://doi.org/10.1007/978-3-319-18230-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18230-8_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18229-2

  • Online ISBN: 978-3-319-18230-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics