Skip to main content

Kite Recognition by Means of Graph Matching

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9069))

Abstract

Kites are remnants of long stone walls that outline the shape of a child’s kite. But the kites are huge, their big size makes them often clearly visible on high-resolution satellite images. Identified at first in the Near East, their area of distribution is getting larger and larger. This wide distribution gives new dimensions in the interpretation of these structures. Consequently, a large scale recognition of kites will help archeologists to understand the functionality of these enigmatic constructions. In this paper, we investigate how the satellite imagery can be exploited in this purpose using a graph representation of the kites. We propose a similarity measure and a kite identification process that can highlights the preservation state of the kites. We also construct from real images a benchmark of kite graphs that can be used by other researchers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bunke, H., Riesen, K.: Recent advances in graph-based pattern recognition with applications in document analysis. Pattern Recognition 44, 1057–1067 (2011)

    Article  MATH  Google Scholar 

  2. Chung, Y.C., Han, T., He, Z.: Building recognition using sketch-based representations and spectral graph matching. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2014–2020 (September 2009)

    Google Scholar 

  3. Desolneux, A., Moisan, L., Morel, J.M.: Meaningful alignments. Int. J. Comput. Vision 40(1), 7–23 (2000)

    Article  MATH  Google Scholar 

  4. Échallier, J.C., Braemer, F.: Nature and function of ’desert kites’: new datta and hypothesis. Paléorient 21(1), 35–63 (1995)

    Article  Google Scholar 

  5. Foggia, P., Percannella, G., Vento, M.: Graph matching and learning in pattern recognition in the last 10 years. International Journal of Pattern Recognition and Artificial Intelligence 28(01), 1450001 (2014)

    Article  MathSciNet  Google Scholar 

  6. Gao, X., Xiao, B., Tao, D., Li., X.: A survey of graph edit distance. Pattern Analysis Applications (13), 113–129 (2010)

    Google Scholar 

  7. von Gioi, R., Jakubowicz, J., Morel, J.M., Randall, G.: Lsd: A fast line segment detector with a false detection control. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(4), 722–732 (2010)

    Article  Google Scholar 

  8. Helms, S., Betts, A.V.G.: The desert ’kites’ of the badiyat esh-sham and north arabia. Paléorient 13(1), 41–67 (1987)

    Article  Google Scholar 

  9. Illingworth, J., Kittler, J.: A survey of the hough transform. Computer Vision, Graphics, and Image Processing 44(1), 87–116 (1988)

    Article  Google Scholar 

  10. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Research Logistics Quarterly 2, 83–97 (1955)

    Article  MathSciNet  Google Scholar 

  11. Lacoste, C., Descombes, X., Zerubia, J.: Point processes for unsupervised line network extraction in remote sensing. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(10), 1568–1579 (2005)

    Article  Google Scholar 

  12. Lopresti, D.P., Wilfong, G.T.: Comparing Semi-Structured Documents via Graph Probing. In: Workshop on Multimedia Information Systems, pp. 41–50 (2001)

    Google Scholar 

  13. McKay, B.: Practical graph isomorphism. Congress Numerantium 87, 30–45 (1981)

    Google Scholar 

  14. Raveaux, R., Burie, J.C., Ogier, J.M.: A graph matching method and a graph matching distance based on subgraph assignments. Pattern Recognition Letters 31, 394–406 (2010)

    Article  Google Scholar 

  15. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of bipartite graph matching. Image and Vision Computing 27, 950–959 (2009)

    Article  Google Scholar 

  16. Rochery, M., Jermyn, I.H., Zerubia, J.: Higher order active contours. Int. J. Comput. Vision 69(1), 27–42 (2006)

    Article  Google Scholar 

  17. Sanfeliu, A., Fu, K.: A distance measure between attributed relational graphs for pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics (Part B) 13(3), 353–363 (1983)

    Article  MATH  Google Scholar 

  18. Ullmann, J.R.: An Algorithm for Subgraph Isomorphism. J. ACM 23(1), 31–42 (1976), http://dx.doi.org/10.1145/321921.321925

    Article  MathSciNet  Google Scholar 

  19. Vento, M.: A long trip in the charming world of graphs for pattern recognition. Pattern Recognition 48(2), 291–301 (2015)

    Article  Google Scholar 

  20. Wang, Q., Jiang, Z., Yang, J., Zhao, D., Shi, Z.: A hierarchical connection graph algorithm for gable-roof detection in aerial image. IEEE Geoscience and Remote Sensing Letters 8(1), 177–181 (2011)

    Article  Google Scholar 

  21. Xiao, Y., Dong, H., Wu, W., Xiong, M., Wang, W., Shi, B.: Structure-based graph distance measures of high degree of precision. Pattern Recognition 41, 3547–3561 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Madi, K. et al. (2015). Kite Recognition by Means of Graph Matching. In: Liu, CL., Luo, B., Kropatsch, W., Cheng, J. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2015. Lecture Notes in Computer Science(), vol 9069. Springer, Cham. https://doi.org/10.1007/978-3-319-18224-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18224-7_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18223-0

  • Online ISBN: 978-3-319-18224-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics