Skip to main content

New Antianginal Drugs Still Not Available for Clinical Use

  • Chapter
  • 946 Accesses

Part of the book series: Current Cardiovascular Therapy ((CCT))

Abstract

Chronic stable angina pectoris is the most common manifestation of coronary artery disease and is associated with impaired quality of life and increased mortality. Signs and symptoms of angina result from an imbalance between myocardial oxygen supply and metabolic oxygen demands and they can be relieved by drugs that reduce metabolic oxygen demands and/or increase coronary blood flow to the ischemic area. Nowadays many patients continue to suffer from angina despite medical treatment and coronary bypass surgery and/or percutaneous interventions. Therefore, there is a medical need for developing new antianginal drug with different, but complementary, mechanisms of action that can be safely added to the current antianginal arsenal. This chapter briefly reviews the mechanism of action and the preliminary clinical efficacy and safety of some drugs under development for the treatment of chronic stable angina pectoris.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Montalescot G, Sechtem U, Achenbach S, et al. 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J. 2013;34:2949–3003.

    Article  PubMed  Google Scholar 

  2. Kaski JC, Chester MR, Chen L, et al. Rapid angiographic progression of coronary artery disease in patients with angina pectoris. The role of complex stenosis morphology. Circulation. 1995;92:2058–65.

    Article  CAS  PubMed  Google Scholar 

  3. Daly CA, Clemens F, López-Sendón JL, et al., Heart Survey Investigators. The clinical characteristics and investigations planned in patients with stable angina presenting to cardiologists in Europe: from the Euro Heart Survey of Stable Angina. Eur Heart J. 2005;26:996–1010.

    Google Scholar 

  4. Serruys PW, Unger F, Sousa JE et al., Arterial Revascularization Therapies Study Group. Comparison of coronary-artery bypass surgery and stenting for the treatment of multivessel disease. N Engl J Med. 2001;344:1117–24

    Google Scholar 

  5. Scirica BM, Morrow DA. Ranolazine in patients with angina and coronary artery disease. Curr Cardiol Rep. 2007;9:272–27.

    Article  PubMed  Google Scholar 

  6. Gibbons RJ, Abrams J, Chatterjee K, et al. 2002 guideline update for the management of patients with chronic stable angina – summary article: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Committee on the Management of Patients with Chronic Stable Angina). J Am Coll Cardiol. 2003;41:159–68.

    Article  PubMed  Google Scholar 

  7. Noman A, Ang DS, Ogston S, et al. Effect of high-dose allopurinol on exercise in patients with chronic stable angina: a randomised, placebo controlled crossover trial. Lancet. 2010;365:2161–7.

    Article  CAS  Google Scholar 

  8. Rajendra NS, Ireland S, George J, et al. Mechanistic insights into the therapeutic use of high-dose allopurinol in angina pectoris. J Am Coll Cardiol. 2011;58:820–8.

    Article  CAS  PubMed  Google Scholar 

  9. Rentoukas E, Tsarouhas K, Tsitsimpikou C, et al. The prognostic impact of allopurinol in patients with acute myocardial infarction undergoing primary percutaneous coronary intervention. Int J Cardiol. 2010;145:257–8.

    Article  CAS  PubMed  Google Scholar 

  10. Wenzel RR, Fleisch M, Shaw S, et al. Hemodynamic and coronary effects of the endothelin antagonist bosentan in patients with coronary artery disease. Circulation. 1998;98:2235–40.

    Article  CAS  PubMed  Google Scholar 

  11. Kyriakides ZS, Kremastinos DT, Kolettis TM, et al. Acute endothelin-A receptor antagonism prevents normal reduction of myocardial ischemia on repeated balloon inflations during angioplasty. Circulation. 2000;102:1937–43.

    Article  CAS  PubMed  Google Scholar 

  12. Fukumoto Y, Mohri M, Inokuchi K, et al. Anti-ischemic effects of Fasudil, a specific Rho-kinase inhibitor, in patients with stable effort angina. J Cardiovasc Pharmacol. 2007;49:117–21.

    Article  CAS  PubMed  Google Scholar 

  13. Shimokawa H, Hiramori K, Iinuma H, et al. Anti-anginal effect of Fasudil, a Rho-kinase inhibitor, in patients with stable effort angina: a multicenter study. J Cardiovasc Pharmacol. 2002;40:751–61.

    Article  CAS  PubMed  Google Scholar 

  14. Vicari RM, Chaitman B, Keefe D, et al. Efficacy and safety of Fasudil in patients with stable angina: a double-blind, placebo-controlled, phase 2 trial. J Am Coll Cardiol. 2005;46:1803.

    Article  CAS  PubMed  Google Scholar 

  15. English KM, Steeds RP, Jones TH, et al. Low-dose transdermal testosterone therapy improves angina threshold in men with chronic stable angina: a randomized, double-blind, placebo-controlled study. Circulation. 2000;102:1906–11.

    Article  CAS  PubMed  Google Scholar 

  16. Rosano GM, Leonardo F, Pagnotta P, et al. Acute anti-ischemic effect of testosterone in men with coronary artery disease. Circulation. 1999;99:1666–70.

    Article  CAS  PubMed  Google Scholar 

  17. Wang L, Xiong ZY, Wang G. Systematic assessment on randomized controlled trials for treatment of stable angina pectoris by compound salvia pellet. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2004;24:500–4.

    PubMed  Google Scholar 

  18. Wang G, Wang L, Xiong ZY, et al. Compound salvia pellet, a traditional Chinese medicine, for the treatment of chronic stable angina pectoris compared with nitrates: a meta-analysis. Med Sci Monit. 2006;12:SR1–7.

    CAS  PubMed  Google Scholar 

  19. Jia Y, Huang F, Zhang S, et al. Is Danshen (Salvia miltiorrhiza) dripping pill more effective than isosorbide dinitrate in treating angina pectoris? A systematic review of randomized controlled trials. Int J Cardiol. 2012;157:330–40.

    Article  PubMed  Google Scholar 

  20. Shang Q, Xu H, Liu Z, et al. Oral Panax notoginseng preparation for coronary heart disease: a systematic review of randomized controlled trials. Evid Based Complement Alternat Med. 2013;2013:940125.

    PubMed  PubMed Central  Google Scholar 

  21. Yang X, Xiong X, Wang J. Sanqi panax notoginseng injection for angina pectoris. Evid Based Complement Alternat Med. 2014;2014:963208.

    PubMed  PubMed Central  Google Scholar 

  22. Luo J, Xu H, Chen K. Systematic review of compound Danshen dropping pill: a Chinese patent medicine for acute myocardial infarction. Evid Based Complement Alternat Med. 2013;2013:808076.

    PubMed  PubMed Central  Google Scholar 

  23. Duan X, Zhou L, Wu T, Liu G, Qiao J, Wei J, Ni J, Zheng J, Chen X, Wang Q. Chinese herbal medicine Suxiao jiuxin wan for angina pectoris. Cochrane Database Syst Rev. 2008;(1):CD004473.

    Google Scholar 

  24. Grines CL, Watkins MW, Helmer G, et al. Angiogenic Gene Therapy (AGENT) trial in patients with stable angina pectoris. Circulation. 2002;105:1291–7.

    Article  CAS  PubMed  Google Scholar 

  25. Grines CL, Watkins MW, Mahmarian JJ, et al. A randomized, double-blind, placebo-controlled trial of Ad5FGF-4 gene therapy and its effect on myocardial perfusion in patients with stable angina. J Am Coll Cardiol. 2003;42:1339–47.

    Article  CAS  PubMed  Google Scholar 

  26. Henry TD, Grines CL, Watkins MW, et al. Effects of Ad5FGF-4 in patients with angina: an analysis of pooled data from the AGENT-3 and AGENT-4 trials. J Am Coll Cardiol. 2007;50:1038–46.

    Article  CAS  PubMed  Google Scholar 

  27. Laham RJ, Sellke FW, Edelman ER, et al. Local perivascular delivery of basic fibroblast growth factor in patients undergoing coronary bypass surgery: results of a phase I randomized, double-blind, placebo-controlled trial. Circulation. 1999;100:1865–71.

    Article  CAS  PubMed  Google Scholar 

  28. Simons M, Annex BH, Laham RJ, et al. Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2: double-blind, randomized, controlled clinical trial. Circulation. 2002;105:788–93.

    Article  CAS  PubMed  Google Scholar 

  29. Henry TD, Annex BH, McKendall GR, et al. The VIVA trial: vascular endothelial growth factor in ischemia for vascular angiogenesis. Circulation. 2003;107:1359–65.

    Article  CAS  PubMed  Google Scholar 

  30. Stewart DJ, Hilton JD, Arnold JM, et al. Angiogenic gene therapy in patients with nonrevascularizable ischemic heart disease: a phase 2 randomized, controlled trial of AdVEGF(121) (AdVEGF121) versus maximum medical treatment. Gene Ther. 2006;13:1503–11.

    Article  CAS  PubMed  Google Scholar 

  31. Kastrup J, Jorgensen E, Ruck A, et al. Direct intramyocardial plasmid vascular endothelial growth factor-A165 gene therapy in patients with stable severe angina pectoris A randomized double-blind placebo-controlled study: the Euroinject One trial. J Am Coll Cardiol. 2005;45:982–8.

    Article  CAS  PubMed  Google Scholar 

  32. Stewart DJ, Kutryk MJ, Fitchett D, et al. VEGF gene therapy fails to improve perfusion of ischemic myocardium in patients with advanced coronary disease: results of the NORTHERN trial. Mol Ther. 2009;17:1109–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kastrup J, Jorgensen E, Fuchs S, et al. A randomised, double-blind, placebo-controlled, multicentre study of the safety and efficacy of BIOBYPASS (AdGVVEGF121.10NH) gene therapy in patients with refractory advanced coronary artery disease: the NOVA trial. EuroIntervention. 2011;6:813–8.

    Article  PubMed  Google Scholar 

  34. Hedman M, Hartikainen J, Syvanne M, et al. Safety and feasibility of catheter-based local intracoronary vascular endothelial growth factor gene transfer in the prevention of postangioplasty and in-stent restenosis and in the treatment of chronic myocardial ischemia: phase II results of the Kuopio Angiogenesis Trial (KAT). Circulation. 2003;107:2677–83.

    Article  CAS  PubMed  Google Scholar 

  35. Hedman M, Muona K, Hedman A, et al. Eight-year safety follow-up of coronary artery disease patients after local intracoronary VEGF gene transfer. Gene Ther. 2009;16:629–34.

    Article  CAS  PubMed  Google Scholar 

  36. Kim JS, Hwang HY, Cho KR. Intramyocardial transfer of hepatocyte growth factor as an adjunct to CABG: phase I clinical study. Gene Ther. 2013;20:717–22.

    Article  CAS  PubMed  Google Scholar 

  37. Spiekermann S, Landmesser U, Dikalov S, et al. Electron spin resonance characterization of vascular xanthine and NAD(P)H oxidase activity in patients with coronary artery disease: relation to endothelium-dependent vasodilation. Circulation. 2003;107:1383–9.

    Article  CAS  PubMed  Google Scholar 

  38. Baldus S, Müllerleile K, Chumley P, et al. Inhibition of xanthine oxidase improves myocardial contractility in patients with ischemic cardiomyopathy. Free Radiac Biol Med. 2006;41:1282–128.

    Article  CAS  Google Scholar 

  39. Hirsch GA, Bottomley PA, Gerstenblith G, et al. Allopurinol acutely increases adenosine triphospate energy delivery in failing human hearts. J Am Coll Cardiol. 2012;59:802–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. George J, Carr E, Davies J, et al. High-dose allopurinol improves endothelial function by profoundly reducing vascular oxidative stress and not by lowering uric acid. Circulation. 2006;114:2508–16.

    Article  CAS  PubMed  Google Scholar 

  41. Higgins P, Dawson J, Lees KR, et al. Xanthine oxidase inhibition for the treatment of cardiovascular disease: a systematic review and meta-analysis. Cardiovasc Ther. 2012;30:217–26.

    Article  CAS  PubMed  Google Scholar 

  42. Khatib SY, Farah H, El-Migdadi F. Allopurinol enhances adenine nucleotide levels and improves myocardial function in isolated hypoxic rat heart. Biochemistry (Mosc). 2001;66:328–33.

    Article  CAS  Google Scholar 

  43. Perez NG, Gao WD, Marban E. Novel myofilament Ca2+-sensitizing property of xanthine oxidase inhibitors. Circ Res. 1998;83:423–30.

    Article  CAS  PubMed  Google Scholar 

  44. Ekelund UEG, Harrison RW, Shokek O, et al. Intravenous allopurinol decreases myocardial oxygen consumption and increases mechanical efficiency in dogs with pacing-induced heart failure. Circ Res. 1999;85:437–45.

    Article  CAS  PubMed  Google Scholar 

  45. Ukai T, Cheng CP, Tachibana H, et al. Allopurinol enhances the contractile response to dobutamine and exercise in dogs with pacing-induced heart failure. Circulation. 2001;103:750–5.

    Article  CAS  PubMed  Google Scholar 

  46. Schumacher Jr HR, Becker MA, Wortmann RL, et al. Effects of febuxostat versus allopurinol and placebo in reducing serum urate in subjects with hyperuricemia and gout: a 28-week, phase III, randomized, double-blind, parallel-group trial. Arthritis Rheum. 2008;59:1540–154.

    Article  CAS  PubMed  Google Scholar 

  47. Becker MA, Schumacher Jr HR, Wortmann RL, et al. Febuxostat compared with allopurinol in subjects with hyperuricemia and gout. N Engl J Med. 2005;343:2450–61.

    Article  Google Scholar 

  48. Zaza A, Belardinelli L, Shryock JC. Pathophysiology and pharmacology of the cardiac “late sodium current”. Pharmacol Ther. 2008;119:326–39.

    Article  CAS  PubMed  Google Scholar 

  49. Hale SL, Shryock JC, Belardinelli LS, et al. Late sodium current inhibition as a new cardioprotective approach. J Mol Cell Cardiol. 2008;44:954–67.

    Article  CAS  PubMed  Google Scholar 

  50. Imahashi K, Kusuoka H, Hashimoto K, et al. Intracellular sodium accumulation during ischemia as the substrate for reperfusion injury. Circ Res. 1999;84:1401–6.

    Article  CAS  PubMed  Google Scholar 

  51. Vacher B, Pignier C, Létienne R, et al. F 15845 inhibits persistent sodium current in the heart and prevents angina in animal models. Br J Pharmacol. 2009;156:214–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pignier C, Rougier JS, Vié B, et al. Selective inhibition of persistent sodium current by F 15845 prevents ischaemia-induced arrhythmias. Br J Pharmacol. 2010;161:79–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vié B, Sablayrolles S, Létienne R, et al. 3-(R)-[3-(2-Methoxyphenylthio-2-(S)-methylpropyl]amino-3,4-dihydro-2H-1,5-benzoxathiepine bromhydrate (F 15845) prevents ischemia-induced heart remodeling by reduction of the intracellular Na + Overload. J Pharmacol Exp Ther. 2009;330:696–703.

    Article  PubMed  CAS  Google Scholar 

  54. Létienne R, Bel L, Bessac AM, et al. Myocardial protection by F 15845, a persistent sodium current blocker, in an ischemia-reperfusion model in the pig. Eur J Pharmacol. 2009;624:16–22.

    Article  PubMed  CAS  Google Scholar 

  55. Lopaschuk GD, Ussher JR, Folmes CD, et al. Myocardial fatty acid metabolism in health and disease. Physiol Rev. 2010;90:207–58.

    Article  CAS  PubMed  Google Scholar 

  56. Lee L, Horowitz J, Frenneaux M. Metabolic manipulation in ischaemic heart disease, a novel approach to treatment. Eur Heart J. 2004;25:634–41.

    Article  CAS  PubMed  Google Scholar 

  57. Ussher JR, Drucker DJ. Cardiovascular biology of the incretin system. Endocr Rev. 2012;33:187–215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ban K, Noyan-Ashraf MH, Hoefer J, et al. Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation. 2008;117:2340–50.

    Article  CAS  PubMed  Google Scholar 

  59. Murohara T. Dipeptidyl peptidase-4 inhibitor: another player for cardiovascular protection. J Am Coll Cardiol. 2012;59:277–9.

    Article  CAS  PubMed  Google Scholar 

  60. Davidson M. Cardiovascular effects of glucagonlike peptide–1 agonists. Am J Cardiol. 2011;108:33B–41.

    Article  CAS  PubMed  Google Scholar 

  61. Timmers L, Henriques JP, de Kleijn DP, et al. Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury. J Am Coll Cardiol. 2009;53:501–10.

    Article  CAS  PubMed  Google Scholar 

  62. Bose AK, Mocanu MM, Carr RD, et al. Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes. 2005;54:146–51.

    Article  CAS  PubMed  Google Scholar 

  63. Nikolaidis LA, Elahi D, Hentosz T, et al. Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy. Circulation. 2004;110:955–61.

    Article  CAS  PubMed  Google Scholar 

  64. Read PA, Khan FZ, Heck PM, et al. DPP-4 inhibition by sitagliptin improves the myocardial response to dobutamine stress and mitigates stunning in a pilot study of patients with coronary artery disease. Circ Cardiovasc Imaging. 2010;3:195–201.

    Article  PubMed  Google Scholar 

  65. Nikolaidis LA, Mankad S, Sokos GG, et al. Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation. 2004;109:962–5.

    Article  CAS  PubMed  Google Scholar 

  66. Sokos GG, Bolukoglu H, German J, et al. Effect of glucagon-like peptide-1 (GLP-1) on glycemic control and left ventricular function in patients undergoing coronary artery bypass grafting. Am J Cardiol. 2007;100:824–9.

    Article  CAS  PubMed  Google Scholar 

  67. Cheng TO. Cardiovascular effects of Danshen. Int J Cardiol. 2007;121:9–22.

    Article  PubMed  Google Scholar 

  68. Ren ZH, Tong YH, Xu W, et al. Tanshinone II A attenuates inflammatory responses of rats with myocardial infarction by reducing MCP-1 expression. Phytomedicine. 2010;17:212–8.

    Article  CAS  PubMed  Google Scholar 

  69. Lau AJ, Toh DF, Chuab TK. Anti-platelet and anticoagulant effects of Panax notoginseng: comparison of raw and steamed Panax notoginseng with Panax ginseng and Panax quinquefolium. J Ethnopharmacol. 2009;125:380–6.

    Article  CAS  PubMed  Google Scholar 

  70. Li YH, Sun XP, Zhang YQ, et al. The antithrombotic effect of borneol related to its anticoagulant property. Am J Chin Med. 2008;36:719–27.

    Article  CAS  PubMed  Google Scholar 

  71. Liu R, Zhang L, Lan X, et al. Protection by borneol on cortical neurons against oxygen-glucose deprivation/reperfusion: involvement of anti-oxidation and anti-inflammation through nuclear transcription factor κappaB signaling pathway. Neuroscience. 2011;176:408–19.

    Article  CAS  PubMed  Google Scholar 

  72. Zhou Y, Cui Y, Zhao X, et al. The safety and tolerance of herbal anti-angina drug compound Danshen droplet pill in healthy volunteers. Pharmacol Pharm. 2013;4:490–5.

    Article  Google Scholar 

  73. Ling S, Luo RZ, Nheu L, et al. A phase I dose-escalation study to evaluate tolerability in a Western population to T89, a modern cardiovascular herbal medicine. J Cardiovasc Pharmacol. 2012;60:513–9.

    Article  CAS  PubMed  Google Scholar 

  74. Kinlay S, Behrendt D, Wainstein M, et al. Role of endothelin-1 in the active constriction of human atherosclerotic coronary arteries. Circulation. 2001;104:1114–8.

    Article  CAS  PubMed  Google Scholar 

  75. Cox ID, Bøtker HE, Bagger JP, et al. Elevated endothelin concentrations are associated with reduced coronary vasomotor responses in patients with chest pain and normal coronary arteriograms. J Am Coll Cardiol. 1999;34:455–60.

    Article  CAS  PubMed  Google Scholar 

  76. Zouridakis EG, Schwartzman R, Garcia-Moll X, et al. Increased plasma endothelin levels in angina patients with rapid coronary artery disease progression. Eur Heart. 2001;22:1578–84.

    Article  CAS  Google Scholar 

  77. Somlyo AP, Somlyo AV. Signal transduction by G-proteins, rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II. J Physiol. 2000;522:177–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wettschureck N, Offermanns S. Rho/Rho-kinase mediated signaling in physiology and pathophysiology. J Mol Med. 2002;80:629–38.

    Article  CAS  PubMed  Google Scholar 

  79. Kandabashi T, Shimokawa H, Miyata K, et al. Inhibition of myosin hosphatase by upregulated rho-kinase plays a key role for coronary artery spasm in a porcine model with interleukin-1beta. Circulation. 2000;101:1319–23.

    Article  CAS  PubMed  Google Scholar 

  80. Shimokawa H, Seto M, Katsumata N, et al. Rho-kinase-mediated pathway induces enhanced myosin light chain phosphorylations in a swine model of coronary artery spasm. Cardiovasc Res. 1999;43:1029–39.

    Article  CAS  PubMed  Google Scholar 

  81. Masumoto A, Mohri M, Shimokawa H, et al. Suppression of coronary artery spasm by the Rho-kinase inhibitor Fasudil in patients with vasospastic angina. Circulation. 2002;105:1545–7.

    Article  CAS  PubMed  Google Scholar 

  82. Mohri M, Shimokawa H, Hirakawa Y, et al. Rho-kinase inhibition with intracoronary Fasudil prevents myocardial ischemia in patients with coronary microvascular spasm. J Am Coll Cardiol. 2003;41:15–9.

    Article  CAS  PubMed  Google Scholar 

  83. Otsuka T, Ibuki C, Suzuki T, et al. Administration of the Rho-kinase inhibitor, Fasudil, following nitroglycerin additionally dilates the site of coronary spasm in patients with vasospastic angina. Coron Artery Dis. 2008;19:105–10.

    Article  PubMed  Google Scholar 

  84. Chou TM, Sudhir K, Hutchison SJ, et al. Testosterone induces dilation of canine coronary conductance and resistance arteries in vivo. Circulation. 1996;94:2614–9.

    Article  CAS  PubMed  Google Scholar 

  85. Webb CM, McNeill JG, Hayward CS, et al. Effects of testosterone on coronary vasomotor regulation in men with coronary heart disease. Circulation. 1999;100:1690–6.

    Article  CAS  PubMed  Google Scholar 

  86. Chu H, Wang Y. Therapeutic angiogenesis: controlled delivery of angiogenic factors. Ther Deliv. 2012;3:693–714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Giordano FJ, Ping P, McKirnan MD, et al. Intracoronary gene transfer of fibroblast growth factor-5 increases blood flow and contractile function in an ischemic region of the heart. Nat Med. 1996;2:534–9.

    Article  CAS  PubMed  Google Scholar 

  88. Gao MH, Lai NC, McKirnan MD, et al. Increased regional function and perfusion after intracoronary delivery of adenovirus encoding fibroblast growth factor 4: report of preclinical data. Hum Gene Ther. 2004;15:574–87.

    Article  CAS  PubMed  Google Scholar 

  89. Ferrarini M, Arsic N, Recchia FA, et al. Adeno-associated virus-mediated transduction of VEGF165 improves cardiac tissue viability and functional recovery after permanent coronary occlusion in conscious dogs. Circ Res. 2006;98:954–61.

    Article  CAS  PubMed  Google Scholar 

  90. Saeed M, Saloner D, Martin A, et al. Adeno-associated viral vector-encoding vascular endothelial growth factor gene: effect on cardiovascular MR perfusion and infarct resorption measurements in swine. Radiology. 2007;243:451–60.

    Article  PubMed  Google Scholar 

  91. Su H, Joho S, Huang Y, et al. Adeno-associated viral vector delivers cardiac-specific and hypoxia-inducible VEGF expression in ischemic mouse hearts. Proc Natl Acad Sci U S A. 2004;101:16280–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Vera Janavel G, Crottogini A, Cabeza Meckert P, et al. Plasmid-mediated VEGF gene transfer induces cardiomyogenesis and reduces myocardial infarct size in sheep. Gene Ther. 2006;13:1133–42.

    Article  CAS  PubMed  Google Scholar 

  93. Azuma J, Taniyama Y, Takeya Y, et al. Angiogenic and antifibrotic actions of hepatocyte growth factor improve cardiac dysfunction in porcine ischemic cardiomyopathy. Gene Ther. 2006;13:1206–13.

    Article  CAS  PubMed  Google Scholar 

  94. Morishita R, Aoki M, Hashiya N, et al. Therapeutic angiogenesis using hepatocyte growth factor (HGF). Curr Gene Ther. 2004;4:199–206.

    Article  CAS  PubMed  Google Scholar 

  95. Taniyama Y, Morishita R, Nakagami H, et al. Potential contribution of a novel antifibrotic factor, hepatocyte growth factor, to prevention of myocardial fibrosis by angiotensin II blockade in cardiomyopathic hamsters. Circulation. 2000;102:246–52.

    Article  CAS  PubMed  Google Scholar 

  96. Taniyama Y, Morishita R, Auki M, et al. Angiogenesis and antifibrotic action by hepatocyte growth factor in cardiomyopathy. Hypertension. 2002;40:47–53.

    Article  CAS  PubMed  Google Scholar 

  97. Guo Y, He J, Wu J, et al. Locally overexpressing hepatocyte growth factor prevents post-ischemic heart failure by inhibition of apoptosis via calcineurin-mediated pathway and angiogenesis. Arch Med Res. 2008;39:179–88.

    Article  CAS  PubMed  Google Scholar 

  98. Tomita N, Morishita R, Taniyama Y, et al. Angiogenic property of hepatocyte growth factor is dependent on upregulation of essential transcription factor for angiogenesis, ets-1. Circulation. 2003;107:1411–7.

    Article  CAS  PubMed  Google Scholar 

  99. Mizuno S, Kurosawa T, Matsumoto K, et al. Hepatocyte growth factor prevents renal fibrosis and dysfunction in a mouse model of chronic renal disease. J Clin Invest. 1998;101:1827–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yang J, Dai C, Liu Y. Hepatocyte growth factor suppresses renal interstitial myofibroblast activation and intercepts Smad signal transduction. Am J Pathol. 2003;163:621–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kitta K, Day RM, Ikeda T, et al. Hepatocyte growth factor protects cardiac myocytes against oxidative stress-induced apoptosis. Free Radic Biol Med. 2001;31:902–10.

    Article  CAS  PubMed  Google Scholar 

  102. Chen XH, Minatoguchi S, Kosai K, et al. In vivo hepatocyte growth factor gene transfer reduces myocardial ischemia-reperfusion injury through its multiple actions. J Card Fail. 2007;13:874–83.

    Article  CAS  PubMed  Google Scholar 

  103. Kondo I, Ohmori K, Oshita A, et al. Treatment of acute myocardial infarction by hepatocyte growth factor gene transfer: the first demonstration of myocardial transfer of a “functional” gene using ultrasonic microbubble destruction. J Am Coll Cardiol. 2004;44:644–53.

    Article  CAS  PubMed  Google Scholar 

  104. Shirakawa Y, Sawa Y, Takewa Y, et al. Gene transfection with human hepatocyte growth factor complementary DNA plasmids attenuates cardiac remodeling after acute myocardial infarction in goat hearts implanted with ventricular assist devices. J Thorac Cardiovasc Surg. 2005;130:624–32.

    Article  CAS  PubMed  Google Scholar 

  105. Carlsson M, Osman NF, Ursell PC. Quantitative MR measurements of regional and global left ventricular function and strain after intramyocardial transfer of VM202 into infarcted swine myocardium. Am J Physiol Heart Circ Physiol. 2008;295:H522–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Saeed M, Martin A, Ursell P, et al. MR assessment of myocardial perfusion, viability, and function after intramyocardial transfer of VM202, a new plasmid human hepatocyte growth factor in ischemic swine myocardium. Radiology. 2008;249:107–18.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Gonzalez A, Rota M, Nurzynska D. Activation of cardiac progenitor cells reverses the failing heart senescent phenotype and prolongs lifespan. Circ Res. 2008;102:597–606.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Instituto de Salud Carlos III (Red RIC, and PI11/01030) and Comunidad de Madrid (S2010/BMD-2374).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Tamargo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tamargo, J., Delpón, E. (2015). New Antianginal Drugs Still Not Available for Clinical Use. In: Avanzas, P., Kaski, J. (eds) Pharmacological Treatment of Chronic Stable Angina Pectoris. Current Cardiovascular Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-17332-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17332-0_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17331-3

  • Online ISBN: 978-3-319-17332-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics