Skip to main content

Computational Ethnography: Automated and Unobtrusive Means for Collecting Data In Situ for Human–Computer Interaction Evaluation Studies

  • Chapter
Book cover Cognitive Informatics for Biomedicine

Part of the book series: Health Informatics ((HI))

Abstract

Computational ethnography is an emerging family of methods for conducting human–computer interaction (HCI) studies in healthcare. Computational ethnography often leverages automated and less obtrusive means for collecting in situ data that reflect end users’ true, unaltered behaviors of interacting with a software system or a device in naturalistic settings. In this chapter, we introduce the concept of computational ethnography and common types of digital trace data available in healthcare environments, as well as commonly used approaches to analyzing computational ethnographical data. At the end of the chapter, we use two use cases to illustrate how this new family of methods has been applied in healthcare to study end users’ interactions with technological interventions in their everyday routines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    HIPAA, or the Health Insurance Portability and Accountability Act, defines policies, procedures, and guidelines for maintaining the privacy and security of protected health information as well as outlining offenses and sets civil and criminal penalties for violations.

  2. 2.

    § 482.24 Condition of Participation: Medical Record Services. http://www.gpo.gov/fdsys/granule/CFR-2011-title42-vol5/CFR-2011-title42-vol5-sec482-24/content-detail.html

  3. 3.

    The Health Information Technology for Economic and Clinical Health Act, or the HITECH Act, sets meaningful use of EHRs as a critical national goal and allocates incentive funds to accelerate their adoption. The HITECH Act contains specific privacy and security requirements, mainly through software certification, to ensure adequate protection of protected health information stored in EHRs.

  4. 4.

    The Office of the National Coordinator for Health Information Technology (ONC) is the principal federal entity responsible for coordinating nationwide efforts to support the adoption of HIT and the promotion of nationwide health information exchange. It was created in 2004 and is organizationally located within the Office of the Secretary for the U.S. Department of Health and Human Services. http://www.healthit.gov

  5. 5.

    ASTM E2147-01: Standard Specification for Audit and Disclosure Logs for Use in Health Information Systems. http://www.astm.org/Standards/E2147.htm

  6. 6.

    http://www.techsmith.com/morae.html

  7. 7.

    https://turf.shis.uth.tmc.edu/turfweb/

  8. 8.

    NISTIR 7804: Technical Evaluation, Testing and Validation of the Usability of Electronic Health Records. http://www.nist.gov/manuscript-publication-search.cfm?pub_id=909701

  9. 9.

    http://www.tobii.com/

  10. 10.

    http://www.smivision.com/

  11. 11.

    http://kinectforwindows.org

  12. 12.

    http://www.microsoft.com/en-us/kinectforwindowsdev/

  13. 13.

    Wifi, cellular, and ZigBee triangulation technologies have also been developed and used for RTLS.

  14. 14.

    http://www.astm.org/Standards/E1384.htm

  15. 15.

    http://www.astm.org/Standards/E2184.htm

  16. 16.

    http://chronoviz.com/

Additional Readings

  • Dumais, S., Jeffries, R., Russell, D. M., Tang, D., & Teevan, J. (2014). Understanding user behavior through log data and analysis. In J. S. Olson & W. Kellogg (Eds.), Ways of knowing in HCI (pp. 349–372). New York: Springer.

    Google Scholar 

  • Laxman, S., & Sastry, P. S. (2006). A survey of temporal data mining. Sadhana-Academy Proceedings in Engineering Sciences, 31(2), 173–198.

    Google Scholar 

  • Weibel, N., Emmenegger, C., Lyons, J., Dixit, R., Hill, L. L., & Hollan, J. D. (2013). Interpreter-mediated physician-patient communication: Opportunities for multimodal healthcare interfaces. In Proceedings of the 7th international conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth’13) (pp. 113–120).

    Google Scholar 

  • Weibel, N., Rick, S., Emmenegger, C., Ashfaq, S., Calvitti, A., & Agha, Z. (2015). LAB-IN-A-BOX: Semi-automatic tracking of activity in the medical office. Personal and Ubiquitous Computing, 19(2), 317–334.

    Google Scholar 

  • Zheng, K., Padman, R., Johnson, M. P., & Diamond, H. S. (2009). An interface-driven analysis of user interactions with an electronic health records system. Journal of the American Medical Informatics Association, 16(2), 228–237.

    Google Scholar 

  • Zheng, K., Haftel, H. M., Hirschl, R. B., O’Reilly, M., & Hanauer, D. A. (2010). Quantifying the impact of health IT implementations on clinical workflow: A new methodological perspective. Journal of the American Medical Informatics Association, 17(4), 454–461.

    Google Scholar 

References

  • Agrawal, R., & Srikant, R. (1995). Mining sequential patterns. In Proceedings of the 11th international conference on data engineering (pp. 3–14).

    Google Scholar 

  • Armstrong, T., & Olatunji, B. O. (2012). Eye tracking of attention in the affective disorders: A meta-analytic review and synthesis. Clinical Psychology Review, 32(8), 704–723.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bloomrosen, M., Starren, J., Lorenzi, N. M., Ash, J. S., Patel, V. L., & Shortliffe, E. H. (2011). Anticipating and addressing the unintended consequences of health IT and policy: A report from the AMIA 2009 Health Policy Meeting. Journal of the American Medical Informatics Association, 18(1), 82–90.

    Article  PubMed  Google Scholar 

  • Bohnsack, K. J., Parker, D. P., & Zheng, K. (2009). Quantifying temporal documentation patterns in clinician use of AHLTA—The DoD’s ambulatory electronic health record. In AMIA Annual Symposium Proceeding (pp. 50–54).

    Google Scholar 

  • Card, S. K., Moran, T. P., & Newell, A. (1980). The keystroke-level model for user performance time with interactive systems. Communications of the ACM, 23(7), 396–410.

    Article  Google Scholar 

  • Douglas, S., Cartmill, R., Brown, R., Hoonakker, P., Slagle, J., Schultz Van Roy, K., Walker, J. M., Weinger, M., Wetterneck, T., & Carayon, P. (2013). The work of adult and pediatric intensive care unit nurses. Nursing Research, 62(1), 50–58.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dumais, S., Jeffries, R., Russell, D. M., Tang, D., & Teevan, J. (2014). Understanding user behavior through log data and analysis. In J. S. Olson & W. Kellogg (Eds.), Ways of knowing in HCI (pp. 349–372). New York: Springer.

    Google Scholar 

  • Eligible professional meaningful use core measures. Measure 14 of 14, Stage 1. http://www.cms.gov/Regulations-and-Guidance/Legislation/EHRIncentivePrograms/downloads/15_Core_ProtectElectronicHealthInformation.pdf. Accessed 20 May 2014.

  • Falck-Ytter, T., Bölte, S., & Gredebäck, G. (2013). Eye tracking in early autism research. Journal of Neurodevelopmental Disorders, 5(1), 28.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fitzpatrick, G., & Ellingsen, G. (2013). A review of 25 years of CSCW research in healthcare: Contributions, challenges and future agendas. Computer Supported Cooperative Work, 22(4–6), 609–665.

    Article  Google Scholar 

  • Fouse, A., Weibel, N., Hutchins, E., & Hollan, J. D. (2011). ChronoViz: A system for supporting navigation of time-coded data. In Proceedings of the 2011 ACM conference on Human Factors in Computing Systems, Extended Abstracts (CHI EA’11) (pp. 299–304).

    Google Scholar 

  • Giles, J. (2012). Computational social science: Making the links. Nature, 488(7412), 448–450.

    Article  CAS  PubMed  Google Scholar 

  • Gonyea, R. M. (2005). Self-reported data in institutional research: Review and recommendations. New Directions for Institutional Research, 127, 73–89.

    Article  Google Scholar 

  • Grinstead, C. M., & Snell, J. L. (1997). Markov chains. In Introduction to probability (pp. 405–470). Providence: American Mathematical Society.

    Google Scholar 

  • Hauschild, I., Vitzthum, K., Klapp, B. F., Groneberg, D. A., & Mache, S. (2011). Time and motion study of anesthesiologists’ workflow in German hospitals. Wiener Medizinische Wochenschrift, 161(17–18), 433–440.

    Article  PubMed  Google Scholar 

  • Hilbert, D. M., & Redmiles, D. F. (2000). Extracting usability information from user interface events. ACM Computing Surveys, 32(4), 384–421.

    Article  Google Scholar 

  • Hripcsak, G., Vawdrey, D. K., Fred, M. R., & Bostwick, S. B. (2011). Use of electronic clinical documentation: Time spent and team interactions. Journal of the American Medical Informatics Association, 18(2), 112–117.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kallem, C., Burrington-Brown, J., & Dinh, A. K. (2007). Data elements for EHR documentation. Journal ofAHIMA, 78(7):web extra.

  • Kazmi, Z. (2013). Effects of exam room EHR use on doctor-patient communication: A systematic literature review. Informatics in Primary Care, 21(1), 30–39.

    PubMed  Google Scholar 

  • Kellermann, A. L., & Jones, S. S. (2013). What it will take to achieve the as-yet-unfulfilled promises of health information technology. Health Affairs (Millwood), 32(1), 63–68.

    Article  Google Scholar 

  • Laxman, S., & Sastry, P. S. (2006). A survey of temporal data mining. Sadhana-Academy Proceedings in Engineering Sciences, 31(2), 173–198.

    Google Scholar 

  • Lazer, D., Pentland, A., Adamic, L., Aral, S., et al. (2009). Social science. Computational social science. Science, 323(5915), 721–723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magrabi, F., Li, S. Y., Day, R. O., & Coiera, E. (2010). Errors and electronic prescribing: A controlled laboratory study to examine task complexity and interruption effects. Journal of the American Medical Informatics Association, 17(5), 575–583.

    Article  PubMed  PubMed Central  Google Scholar 

  • Overhage, J. M., Perkins, S., Tierney, W. M., & McDonald, C. J. (2001). Controlled trial of direct physician order entry: Effects on physicians’ time utilization in ambulatory primary care internal medicine practices. Journal of the American Medical Informatics Association, 8(4), 361–371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poole, A., & Ball, L. J. (2005). Eye tracking in human-computer interaction and usability research: Current status and future. In C. Ghaoui (Ed.), Encyclopedia of human-computer interaction. Hershey: Idea Group, Inc.

    Google Scholar 

  • Ritter, F. E., & Larkin, J. H. (1994). Developing process models as summaries of HCI action sequences. Human Computer Interaction, 9(4), 345–383.

    Article  Google Scholar 

  • Rosen, M. A., Dietz, A. S., Yang, T., Priebe, C. E., & Pronovost, P. J. (2014, July 22). An integrative framework for sensor-based measurement of teamwork in healthcare. Journal of the American Medical Informatics Association. pii: amiajnl-2013-002606. doi:10.1136/amiajnl-2013-002606. [Epub ahead of print].

  • Sanderson, P. M., & Fisher, C. (1994). Exploratory sequential data analysis: Foundations. Human-Computer Interaction, 9(4), 251–317.

    Article  Google Scholar 

  • Tien, T., Pucher, P. H., Sodergren, M. H., Sriskandarajah, K., Yang, G. Z., & Darzi, A. (2014). Eye tracking for skills assessment and training: A systematic review. Journal of Surgical Research, 191(1), 169–178.

    Article  PubMed  Google Scholar 

  • Tierney, W. M., Miller, M. E., Overhage, J. M., & McDonald, C. J. (1993). Physician inpatient order writing on microcomputer workstations effects on resource utilization. JAMA, 269, 379–383.

    Article  CAS  PubMed  Google Scholar 

  • Vawdrey, D. K., Wilcox, L. G., Collins, S., Feiner, S., Mamykina, O., Stein, D. M., Bakken, S., Fred, M. R., & Stetson, P. D. (2011). Awareness of the care team in electronic health records. Applied Clinical Informatics, 2(4), 395–405.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wamba, S. F., Anand, A., & Carter, L. (2013). A literature review of RFID-enabled healthcare applications and issues. International Journal of Information Management, 33(5), 875–891.

    Article  Google Scholar 

  • Weibel, N., Emmenegger, C., Lyons, J., Dixit, R., Hill, L. L., & Hollan, J. D. (2013). Interpreter-mediated physician-patient communication: Opportunities for multimodal healthcare interfaces. In Proceedings of the 7th international conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth’13) (pp. 113–120).

    Google Scholar 

  • Weibel, N., Rick, S., Emmenegger, C., Ashfaq, S., Calvitti, A., & Agha, Z. (2015). LAB-IN-A-BOX: Semi-automatic tracking of activity in the medical office. Personal and Ubiquitous Computing, 19(2), 317–334.

    Google Scholar 

  • Westbrook, J. I., & Ampt, A. (2009). Design, application and testing of the Work Observation Method by Activity Timing (WOMBAT) to measure clinicians’ patterns of work and communication. International Journal of Medical Informatics, 78(Suppl 1), S25–S33.

    Article  PubMed  Google Scholar 

  • Westbrook, J. I., Li, L., Georgiou, A., Paoloni, R., & Cullen, J. (2013). Impact of an electronic medication management system on hospital doctors’ and nurses’ work: A controlled pre-post, time and motion study. Journal of the American Medical Informatics Association, 20(6), 1150–1158.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wetterneck, T. B., Lapin, J. A., Krueger, D. J., Holman, G. T., Beasley, J. W., & Karsh, B. T. (2012). Development of a primary care physician task list to evaluate clinic visit workflow. BMJ Quality Safety, 21(1), 47–53.

    Article  PubMed  Google Scholar 

  • Zheng, K., Padman, R., Johnson, M. P., & Diamond, H. S. (2009). An interface-driven analysis of user interactions with an electronic health records system. Journal of the American Medical Informatics Association, 16(2), 228–237.

    Google Scholar 

Download references

Acknowledgement

We are grateful to Steven Rick who contributed the photos used in this chapter to illustrate computational ethnographical data recording devices deployed in exam rooms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Zheng Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zheng, K., Hanauer, D.A., Weibel, N., Agha, Z. (2015). Computational Ethnography: Automated and Unobtrusive Means for Collecting Data In Situ for Human–Computer Interaction Evaluation Studies. In: Patel, V.L., Kannampallil, T.G., Kaufman, D.R. (eds) Cognitive Informatics for Biomedicine. Health Informatics. Springer, Cham. https://doi.org/10.1007/978-3-319-17272-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17272-9_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17271-2

  • Online ISBN: 978-3-319-17272-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics