Skip to main content

Polymorphism and Its Implications on Structure-Property Correlation in Calcium-Silicate-Hydrates

  • Conference paper
Nanotechnology in Construction

Abstract

Albeit concrete’s ubiquitous presence in our built environment, our knowledge of elementary processes affecting its macroscopic properties is rather limited. To achieve deeper levels of understanding, it is imperative to uncover the true molecular structure of calcium-silicate-hydrates (C-S-H), the binding phase of cement paste responsible for its strength and durability properties. In this work, we discuss the co-existence of C-S-Hs of different molecular structures at a given stoichiometry from the viewpoints of the atomistic simulations. To this end, we propose a statistical physics-based approach to construct realistic models for C-S-H. Subsequently, we employ high-throughput combinatorial simulation framework to construct a database of realistic C-S-H models with calcium-to-silicon ratio (C/S) between 1.1 and 2.1. This finding has broad implications on the correlation between chemistry and physical properties of cementitious materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manzano, H., et al. (2011). Impact of chemical impurities on the crystalline cement clinker phases determined by atomistic simulations. Crystal Growth and Design, 11(7), 2964–2972.

    Article  Google Scholar 

  2. Abdolhosseini Qomi, M. J., Ulm, F.-J., & Pellenq, R. J.-M. (2012). Evidence on the dual nature of aluminum in the calcium-silicate-hydrates based on atomistic simulations. Journal of the American Ceramics Society, 95(3), 1128–1137.

    Google Scholar 

  3. Bauchy, M., Abdolhosseini Qomi, M. J., Bichara, C., Ulm, F.-J., & Pellenq, R. J.-M. (2014). Nanoscale structure of cement: Viewpoint of rigidity theory. The Journal of Physical Chemistry C, 118(23), 12485–12493.

    Article  Google Scholar 

  4. Richardson, I. G. (2008). The calcium silicate hydrates. Cement and Concrete Research, 38(2), 137–158.

    Article  Google Scholar 

  5. Pellenq, R. J.-M., et al. (2009). A realistic molecular model of cement hydrates. Proceedings of the National Academy of Sciences, 106(38), 16102–16107.

    Article  Google Scholar 

  6. Manzano, H., Dolado, J. S., & Ayuela, A. (2009). Elastic properties of the main species present in Portland cement pastes. Acta Materialia, 57(5), 1666–1674.

    Article  Google Scholar 

  7. Abdolhosseini Qomi, M. J. et al. (2014) Combinatorial molecular optimization of cement hydrates. Nature Communications, 5, 4960. doi:10.1038/ncomms5960. Available at: http://www.nature.com/ncomms/2014/140924/ncomms5960/full/ncomms5960.html. Accessed 24 Sept 2014.

  8. Bauchy, M., Qomi, M. J. A., Ulm, F.-J., & Pellenq, R. J.-M. (2014). Order and disorder in calcium–silicate–hydrate. The Journal of Chemical Physics, 140(21), 214503.

    Article  Google Scholar 

  9. Manzano, H., Pellenq, R. J. M., Ulm, F.-J., Buehler, M. J., & van Duin, A. C. T. (2012). Hydration of calcium oxide surface predicted by reactive force field molecular dynamics. Langmuir, 28(9), 4187–4197.

    Article  Google Scholar 

  10. Shahsavari, R., Pellenq, R. J.-M., & Ulm, F.-J. (2011). Empirical force fields for complex hydrated calcio-silicate layered materials. Physical Chemistry Chemical Physics: PCCP, 13(3), 1002–1011.

    Article  Google Scholar 

  11. Hamid, S. (1981). The crystal-structure of the 11A natural tobermorite Ca2.25[Si3O7.5(OH)1.5].1H2O. Zeitschrift für Kristallographie, 154(3–4), 189–198.

    Article  Google Scholar 

  12. Qomi, M. J. A., Bauchy, M., Ulm, F.-J., & Pellenq, R. J.-M. (2014). Anomalous composition-dependent dynamics of nanoconfined water in the interlayer of disordered calcium-silicates. The Journal of Chemical Physics, 140(5), 054515.

    Article  Google Scholar 

  13. Gale, J. D. (1997). GULP: A computer program for the symmetry-adapted simulation of solids. Journal of the Chemical Society, Faraday Transactions, 93(4), 629–637.

    Article  Google Scholar 

  14. Gale, J. D., & Rohl, A. L. (2003). The General Utility Lattice Program (GULP). Molecular Simulation, 29(5), 291–341.

    Article  MATH  Google Scholar 

  15. Ebrahimi, D., Pellenq, R. J.-M., & Whittle, A. J. (2012). Nanoscale elastic properties of montmorillonite upon water adsorption. Langmuir, 28(49), 16855–16863.

    Article  Google Scholar 

  16. Allen, A. J., Thomas, J. J., & Jennings, H. M. (2007). Composition and density of nanoscale calcium–silicate–hydrate in cement. Nature Materials, 6(4), 311–316.

    Article  Google Scholar 

  17. Chen, J. J., Thomas, J. J., Taylor, H. F. W., & Jennings, H. M. (2004). Solubility and structure of calcium silicate hydrate. Cement and Concrete Research, 34(9), 1499–1519.

    Article  Google Scholar 

  18. Aghaei, A., Abdolhosseini Qomi, M. J., Kazemi, M. T., & Khoei, A. R. (2009). Stability and size-dependency of Cauchy–Born hypothesis in three-dimensional applications. International Journal of Solids and Structures, 46(9), 1925–1936.

    Article  MATH  Google Scholar 

  19. Khoei, A. R., Qomi, M. J. A., Kazemi, M. T., & Aghaei, A. (2009). An investigation on the validity of Cauchy–Born hypothesis using Sutton-Chen many-body potential. Computational Materials Science, 44(3), 999–1006.

    Article  Google Scholar 

  20. Khoei, A. R., Ghahremani, P., Abdolhosseini Qomi, M. J., & Banihashemi, P. (2011). Stability and size-dependency of temperature-related Cauchy–Born hypothesis. Computational Materials Science, 50(5), 1731–1743.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Pellenq .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Qomi, M.J.A., Bauchy, M., Ulm, FJ., Pellenq, R. (2015). Polymorphism and Its Implications on Structure-Property Correlation in Calcium-Silicate-Hydrates. In: Sobolev, K., Shah, S. (eds) Nanotechnology in Construction. Springer, Cham. https://doi.org/10.1007/978-3-319-17088-6_12

Download citation

Publish with us

Policies and ethics