Skip to main content

Improving Saliency Models by Predicting Human Fixation Patches

  • Conference paper
  • First Online:
Book cover Computer Vision -- ACCV 2014 (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9005))

Included in the following conference series:

Abstract

There is growing interest in studying the Human Visual System (HVS) to supplement and improve the performance of computer vision tasks. A major challenge for current visual saliency models is predicting saliency in cluttered scenes (i.e. high false positive rate). In this paper, we propose a fixation patch detector that predicts image patches that contain human fixations with high probability. Our proposed model detects sparse fixation patches with an accuracy of \(84\) % and eliminates non-fixation patches with an accuracy of \(84\) % demonstrating that low-level image features can indeed be used to short-list and identify human fixation patches. We then show how these detected fixation patches can be used as saliency priors for popular saliency models, thus, reducing false positives while maintaining true positives. Extensive experimental results show that our proposed approach allows state-of-the-art saliency methods to achieve better prediction performance on benchmark datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that there are different versions of Itti’s model. Here, we used the best performing version in [14].

  2. 2.

    Due to differences in image resolution, the reported scores of the saliency models are slightly different from those reported in [11, 23]. However, the relative performance of the models is not significantly affected.

References

  1. Ross, J., Burr, D., Morrone, C.: Suppression of the magnocellular pathway during saccades. (Behavioural Brain Research)

    Google Scholar 

  2. Itti, L., Koch, C.: Computational modelling of visual attention. Nat. Rev. Neurosci. 2, 194–203 (2001)

    Article  Google Scholar 

  3. Rutishauser, U., Walther, D., Koch, C., Perona, P.: Is bottom-up attention useful for object recognition. In: CVPR (2004)

    Google Scholar 

  4. Walther, D., Itti, L., Riesenhuber, M., Poggio, T.A., Koch, C.: Attentional selection for object recognition - a gentle way. In: Bülthoff, H.H., Lee, S.-W., Poggio, T.A., Wallraven, C. (eds.) BMCV 2002. LNCS, vol. 2525, pp. 472–479. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Endres, I., Hoiem, D.: Category independent object proposals. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 575–588. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Shapovalova, N., Raptis, M., Sigal, L., Mori, G.: Action is in the eye of the beholder: eye-gaze driven model for spatio-temporal action localization. In: NIPS (2013)

    Google Scholar 

  7. Mikolajczyk, K., Schmid, C.: Scale & affine invariant interest point detectors. Int. J. comput. vis. 60, 63–86 (2004)

    Article  Google Scholar 

  8. Dave, A., Dubey, R., Ghanem, B.: Do humans fixate on interest points? In: ICPR (2012)

    Google Scholar 

  9. Yang, L., Zheng, N., Yang, J., Chen, M., Chen, H.: A biased sampling strategy for object categorization. In: CVPR (2009)

    Google Scholar 

  10. Marchesotti, L., Cifarelli, C., Csurka, G.: A framework for visual saliency detection with applications to image thumbnailing. In: ICCV (2009)

    Google Scholar 

  11. Borji, A., Sihite, D., Itti, L.: Quantitative analysis of human-model agreement in visual saliency modeling: a comparative study. IEEE Trans. Image Process. 22, 55–69 (2013)

    Article  MathSciNet  Google Scholar 

  12. Hou, X., Zhang, L.: Saliency detection: a spectral residual approach. In: CVPR (2007)

    Google Scholar 

  13. Zhang, L., Tong, M.H., Marks, T.K., Shan, H., Cottrell, G.W.: Sun: a bayesian framework for saliency using natural statistics. J. Vis. 8(7), 1–20 (2008)

    Google Scholar 

  14. Harel, J., Koch, C., Perona, P.: Graph-based visual saliency. In: NIPS (2007)

    Google Scholar 

  15. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20, 1254–1259 (1998)

    Article  Google Scholar 

  16. Garcia-Diaz, A., Fdez-Vidal, X.R., Pardo, X.M., Dosil, R.: Saliency from hierarchical adaptation through decorrelation and variance normalization. Image Vis. Comput. 30, 51–64 (2012)

    Article  Google Scholar 

  17. Garcia-Diaz, A., Leborán, V., Fdez-Vidal, X.R., Pardo, X.M.: On the relationship between optical variability, visual saliency, and eye fixations: a computational approach. J. Vis. 12(6), 1–22 (2012)

    Article  Google Scholar 

  18. Avraham, T., Lindenbaum, M.: Esaliency (extended saliency): meaningful attention using stochastic image modeling. IEEE Trans. Pattern Anal. Mach. Intell. 32, 693–708 (2010)

    Article  Google Scholar 

  19. Li, Y., Zhou, Y., Yan, J., Niu, Z., Yang, J.: Visual saliency based on conditional entropy. In: Maybank, S., Taniguchi, R., Zha, H. (eds.) ACCV 2009, Part I. LNCS, vol. 5994, pp. 246–257. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  20. Zhang, J., Stan, S.: Saliency detection: a boolean map approach. In: ICCV (2013)

    Google Scholar 

  21. Itti, L., Baldi, P.: Bayesian surprise attracts human attention. In: NIPS (2006)

    Google Scholar 

  22. Judd, T., Ehinger, K., Durand, F., Torralba, A.: Learning to predict where humans look. In: ICCV (2009)

    Google Scholar 

  23. Borji, A., Tavakoli, H., Sihite, D., Itti, L.: Analysis of scores, datasets, and models in visual saliency prediction. In: ICCV (2013)

    Google Scholar 

  24. Borji, A., Itti, L.: State-of-the-art in visual attention modeling. IEEE Trans. Pattern Anal. Mach. Intell. 35, 185–207 (2012)

    Article  Google Scholar 

  25. Soto, D., Humphreys, G.W., Heinke, D.: Working memory can guide pop-out search. Vis. Res. 46, 1010–1018 (2006)

    Article  Google Scholar 

  26. Sheinberg, D.L., Logothetis, N.K.: Noticing familiar objects in real world scenes: the role of temporal cortical neurons in natural vision. J. Neurosci. 21, 1340–1350 (2001)

    Google Scholar 

  27. Yang, Y., Song, M., Li, N., Bu, J., Chen, C.: What is the chance of happening: a new way to predict where people look. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 631–643. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  28. Poirier, F.J., Gosselin, F., Arguin, M.: Perceptive fields of saliency. J. Vis. 8, 14 (2008)

    Article  Google Scholar 

  29. Scharfenberger, C., Wong, A., Fergani, K., Zelek, J.S., Clausi, D.A.: Statistical textural distinctiveness for salient region detection in natural images. In: CVPR (2013)

    Google Scholar 

  30. Le Meur, O., Le Callet, P., Barba, D.: Predicting visual fixations on video based on low-level visual features. Vis. Res. 47, 2483–2498 (2007)

    Article  Google Scholar 

  31. Jaakkola, T., Haussler, D.: Exploiting generative models in discriminative classifiers. In: NIPS (1998)

    Google Scholar 

  32. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the em algorithm. J. R. Stat. Soci. Ser. B 39, 1–38 (1977)

    MATH  MathSciNet  Google Scholar 

  33. Perronnin, F., Sánchez, J., Mensink, T.: Improving the fisher kernel for large-scale image classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 143–156. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  34. Marchesotti, L., Cifarelli, C., Csurka, G.: A framework for visual saliency detection with applications to image thumbnailing. In: ICCV (2009)

    Google Scholar 

  35. Shechtman, E., Irani, M.: Matching local self-similarities across images and videos. In: CVPR (2007)

    Google Scholar 

  36. Deselaers, T., Ferrari, V.: Global and efficient self-similarity for object classification and detection. In: CVPR (2010)

    Google Scholar 

  37. Zhao, Q., Koch, C.: Learning a saliency map using fixated locations in natural scenes. J. Vis. 11, 1–15 (2011)

    Article  Google Scholar 

  38. Judd, T., Durand, F., Torralba, A.: A benchmark of computational models of saliency to predict human fixations. Technical report (2012)

    Google Scholar 

  39. Peters, R.J., Iyer, A., Itti, L., Koch, C.: Components of bottom-up gaze allocation in natural images. Vis. Res. 45, 2397–2416 (2005)

    Article  Google Scholar 

  40. Bruce, N., Tsotsos, J.: Saliency based on information maximization. In: NIPS (2006)

    Google Scholar 

  41. Einhäuser, W., Spain, M., Perona, P.: Objects predict fixations better than early saliency. J. Vis. 8, 18 (2008)

    Article  Google Scholar 

  42. Rahtu, E., Kannala, J., Salo, M., Heikkilä, J.: Segmenting salient objects from images and videos. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 366–379. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  43. Jiang, B., Zhang, L., Lu, H., Yang, C., Yang, M.H.: Saliency detection via absorbing markov chain. In: ICCV (2013)

    Google Scholar 

  44. Margolin, R., Tal, A., Zelnik-Manor, L.: What makes a patch distinct? In: CVPR (2013)

    Google Scholar 

  45. Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.H.: Saliency detection via graph-based manifold ranking. In: CVPR (2013)

    Google Scholar 

  46. Everingham, M., Van Gool, L., Williams, C., Winn, J., Zisserman, A.: The pascal visual object classes challenge 2007 (voc 2007) results (2007). In: URL http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html. (2008)

Download references

Acknowledgement

Research reported in this publication was supported by competitive research funding from King Abdullah University of Science and Technology (KAUST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Ghanem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Dubey, R., Dave, A., Ghanem, B. (2015). Improving Saliency Models by Predicting Human Fixation Patches. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9005. Springer, Cham. https://doi.org/10.1007/978-3-319-16811-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16811-1_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16810-4

  • Online ISBN: 978-3-319-16811-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics