Skip to main content

A Computational Method for the Rate Estimation of Evolutionary Transpositions

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9043))

Abstract

Genome rearrangements are evolutionary events that shuffle genomic architectures. Most frequent genome rearrangements are reversals, translocations, fusions, and fissions. While there are some more complex genome rearrangements such as transpositions, they are rarely observed and believed to constitute only a small fraction of genome rearrangements happening in the course of evolution. The analysis of transpositions is further obfuscated by intractability of the underlying computational problems.

We propose a computational method for estimating the rate of transpositions in evolutionary scenarios between genomes. We applied our method to a set of mammalian genomes and estimated the transpositions rate in mammalian evolution to be around 0.26.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alekseyev, M., Pevzner, P.: Multi-break rearrangements and chromosomal evolution. Theoretical Computer Science 395(2), 193–202 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21(16), 3340–3346 (2005)

    Article  Google Scholar 

  3. Ranz, J., González, J., Casals, F., Ruiz, A.: Low occurrence of gene transposition events during the evolution of the genus Drosophila. Evolution 57(6), 1325–1335 (2003)

    Article  Google Scholar 

  4. Bulteau, L., Fertin, G., Rusu, I.: Sorting by transpositions is difficult. SIAM Journal on Discrete Mathematics 26(3), 1148–1180 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bader, M., Ohlebusch, E.: Sorting by weighted reversals, transpositions, and inverted transpositions. Journal of Computational Biology 14(5), 615–636 (2007)

    Article  MathSciNet  Google Scholar 

  6. Fertin, G.: Combinatorics of genome rearrangements. MIT Press (2009)

    Google Scholar 

  7. Blanchette, M., Kunisawa, T., Sankoff, D.: Parametric genome rearrangement. Gene 172(1), GC11–GC17 (1996)

    Google Scholar 

  8. Jiang, S., Alekseyev, M.: Weighted genomic distance can hardly impose a bound on the proportion of transpositions. Research in Computational Molecular Biology, 124–133 (2011)

    Google Scholar 

  9. Lin, Y., Moret, B.M.: Estimating true evolutionary distances under the DCJ model. Bioinformatics 24(13), i114–i122 (2008)

    Google Scholar 

  10. Ohno, S.: Evolution by gene duplication. Springer, Berlin (1970)

    Google Scholar 

  11. Nadeau, J.H., Taylor, B.A.: Lengths of Chromosomal Segments Conserved since Divergence of Man and Mouse. Proceedings of the National Academy of Sciences 81(3), 814–818 (1984)

    Article  Google Scholar 

  12. Pevzner, P.A., Tesler, G.: Human and mouse genomic sequences reveal extensive breakpoint reuse in mammalian evolution. Proceedings of the National Academy of Sciences 100, 7672–7677 (2003)

    Article  Google Scholar 

  13. Alekseyev, M.A., Pevzner, P.A.: Comparative Genomics Reveals Birth and Death of Fragile Regions in Mammalian Evolution. Genome Biology 11(11), R117 (2010)

    Google Scholar 

  14. Ma, J., Zhang, L., Suh, B.B., Raney, B.J., Burhans, R.C., Kent, W.J., Blanchette, M., Haussler, D., Miller, W.: Reconstructing contiguous regions of an ancestral genome. Genome Research 16(12), 1557–1565 (2006)

    Article  Google Scholar 

  15. Alekseyev, M., Pevzner, P.A.: Breakpoint graphs and ancestral genome reconstructions. Genome Research, gr–082784 (2009)

    Google Scholar 

  16. Alekseyev, M.A.: Multi-break rearrangements and breakpoint re-uses: from circular to linear genomes. Journal of Computational Biology 15(8), 1117–1131 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Alexeev, N., Aidagulov, R., Alekseyev, M.A. (2015). A Computational Method for the Rate Estimation of Evolutionary Transpositions. In: Ortuño, F., Rojas, I. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2015. Lecture Notes in Computer Science(), vol 9043. Springer, Cham. https://doi.org/10.1007/978-3-319-16483-0_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16483-0_46

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16482-3

  • Online ISBN: 978-3-319-16483-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics