Skip to main content

Plasmids: Histories of a Concept

  • Chapter
  • First Online:

Part of the book series: Interdisciplinary Evolution Research ((IDER,volume 3))

Abstract

The plasmid concept is rooted in the notion of particulate determinants of inheritance and the chromosome theory of heredity, but some biologists saw genes as determinants of the way an organism developed from a fertilized ovum into a mature adult; some of these determinants seem to be passed on through cytoplasmic transfer. In a 1952 review, J. Lederberg proposed that all “extrachromosomal hereditary determinants” be designated “plasmids.” In 1958, Jacob and Wollman suggested that genetic elements which were optionally associated with the chromosomes, such as the F-factor, the colicinogenic factor, and bacteriophage lambda, be termed “episomes.” Allan Campbell (Adv Genetics 11:101–145, 1962) proposed a beautifully simple solution to the problem of how episomes could be associated with the chromosome when he suggested the recombinational interaction of one circular molecule with another. The key to the modern concept of the plasmid was the confirmation that DNA molecules can, and often do, exist as circular structures. Many observations (mainly on yeast and protozoans) suggested that nonchromosomal heredity exists in eucaryotes as well, and eventually, cytochemical, electron microscopic, and biochemical evidence established the existence of cytoplasmic genes in eucaryotes. By the end of the 1960s, both the genetic and physical understanding of plasmids and cytoplasmic heredity had reached a level of detail to allow exploitation of these genetic elements as tools to manipulate and study cell genetics by various techniques of lateral gene transfer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akiba T, Koyama T, Isshiki Y, Kimura S, Fukushima T (1960) On the mechanisms of the development of multiple drug-resistant clones of Shigella. Jap J Microbiol 4:219–227

    Article  CAS  PubMed  Google Scholar 

  • Bazaral M, Helinski DR (1968) Circular DNA forms of colicinogenic factors E1, E2 and E3 from Escherichia coli. J Mol Biol 36:185–194

    Article  CAS  PubMed  Google Scholar 

  • Boveri T (1904) Ergebnisse über die Konstitution der chromatischen Substanz des Zellkerns. Fischer, Jena

    Book  Google Scholar 

  • Brock T (1990) The emergence of bacterial genetics. Cold Spring Harbor Press, Cold Spring Harbor, p 104

    Google Scholar 

  • Cairns J (1963) The bacterial chromosome and its manner of replication as seen by autoradiography. J Mol Biol 6:208–213

    Article  CAS  PubMed  Google Scholar 

  • Calef E, Licciardello G (1960) Recombination experiments on prophage host relationships. Virology 12:81–103

    Article  Google Scholar 

  • Campbell A (1962) Episomes. Adv Genetics 11:101–145

    Article  Google Scholar 

  • Cavalli LL, Heslot H (1949) Recombination in bacteria: outcrossing Escherichia coli K 12. Nature 164:1057–1058

    Article  CAS  PubMed  Google Scholar 

  • Clowes RC (1972) Molecular structure of bacterial plasmids. Bacteriol Rev 36:361–405

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dulbecco R, Vogt M (1963) Evidence for a ring structure of polyoma virus DNA. Proc Natl Acad Sci USA 50:236–243

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ephrussi B, Słonimski PP (1955) Yeast mitochondria: subcellular units involved in the synthesis of respiratory enzymes in yeast. Nature 176:1207–1208

    Article  CAS  PubMed  Google Scholar 

  • Fiers W, Sinsheimer RL (1962) The structure of the DNA of bacteriophage φX174: I. The action of exopolynucleotidases. J Mol Biol 5:408–434

    Article  CAS  PubMed  Google Scholar 

  • Fredericq P (1963) On the nature of colicinogenic factors: a review. J Theor Biol 4:159–165

    Article  CAS  PubMed  Google Scholar 

  • Gratia A (1925) Sur un remarquable exemple d’antagonisme entre deux souches de colibacille. Compt Rend Soc Biol 93:1040–1041

    Google Scholar 

  • Harrison R (1937) Embryology and its relations. Science 85:369–374

    Article  CAS  PubMed  Google Scholar 

  • Hayes W (1952) Recombination in Bact. coli K12: unidirectional transfer of genetic material. Nature 169:118–119

    Article  CAS  PubMed  Google Scholar 

  • Hayes W (1953) Observations on a transmissible agent determining sexual differentiation in Bacterium coli. J Gen Microbiol 8:72–88

    Article  CAS  PubMed  Google Scholar 

  • Hayes W (1968) The genetics of bacteria and their viruses, 2nd edn. Blackwell, Oxford

    Google Scholar 

  • Hershey AD, Burgi E, Ingraham L (1963) Cohesion of DNA molecules isolated from phage lambda. Proc Natl Acad Sci USA 49:748–755

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huxley J (1942) Evolution: the modern synthesis. G Allen and Unwin, London

    Google Scholar 

  • Jacob F, Adelberg EA (1959) Transfert de caracteres genetiques par incorporation au facteur sexuel d’Escherichia-coli. Compt Rend Acad Sci 249:189–191

    CAS  Google Scholar 

  • Jacob F, Wollman E (1958) Les épisomes, éléments génétiques ajoutés. Compt Rend Acad Sci 247:154–156

    CAS  Google Scholar 

  • Kleinschmidt AK, Zahn RK (1959) Deoxyribonucleic acid molecules in protein-mixed films. Z Naturforsch 146:770–779

    Google Scholar 

  • Lederberg J (1947) Gene recombination and linked segregations in Escherichia coli. Genetics 32:505

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lederberg EM (1950) Lysogenicity in Escherichia coli strain K-12. Microb Gen Bull 1:5–8

    Google Scholar 

  • Lederberg J (1951) Prevalence of Escherichia coli strains exhibiting genetic recombination. Science 114:68–69

    Article  CAS  PubMed  Google Scholar 

  • Lederberg J (1952) Cell genetics and hereditary symbiosis. Physiol Rev 32:403–430

    CAS  PubMed  Google Scholar 

  • Lederberg J, Tatum EL (1946) Gene recombination in Escherichia coli. Nature 158:558

    Article  CAS  PubMed  Google Scholar 

  • Lederberg J, Cavalli LL, Lederberg EM (1952) Sex compatibility in Escherichia coli. Genetics 37:720–730

    CAS  PubMed Central  PubMed  Google Scholar 

  • Levinthal C (1956) The mechanism of DNA replication and genetic recombination in phage. Proc Natl Acad Sci USA 42:394–404

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marmur J, Rownd R, Falkow S, Baron LS, Schildkraut C, Doty P (1961) The nature of intergeneric episomal infection. Proc Natl Acad Sci USA 47:972–979

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morgan TH (1926) Theory of the gene. Yale Univ Press, New Haven

    Google Scholar 

  • Radloff R, Bauer W, Vinograd J (1967) A dye-buoyant-density method for the detection and isolation of closed circular duplex DNA: the closed circular DNA in HeLa cells. Proc Natl Acad Sci USA 57:1514–1521

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rhoades MM (1955) Interaction of genic and non-genic hereditary units and the physiology of non-genic function. In: Ruhland W (ed) Encyclopedia of Plant Physiology, vol 1. Springer, Berlin

    Google Scholar 

  • Ris H, Plaut W (1962) Ultrastructure of DNA-containing areas in the chloroplast of Chlamydomonas. J Cell Biol 13:383–391

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rupp WD, Ihler G (1968) Strand selection during bacterial mating. Cold Spring Harb Symp Quant Biol 33:647–650

    Article  CAS  PubMed  Google Scholar 

  • Sager R (1954) Mendelian and non-Mendelian inheritance of streptomycin resistance in Chlamydomonas reinhardi. Proc Natl Acad Sci USA 40:356–363

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sager R (1972) Cytoplasmic genes and organelles. Academic Press, New York

    Google Scholar 

  • Sapp J (1987) The cold war in genetics. In: Beyond the gene. Oxford Univ Press, Oxford

    Google Scholar 

  • Silver S, Ozeki H (1962) Transfer of deoxyribonucleic acid accompanying the transmission of colicinogenic properties by cell mating. Nature 195:875–876

    Article  Google Scholar 

  • Sinsheimer RL (1959) A single-stranded deoxyribonucleic acid from bacteriophage φX174. J Mol Biol 1:43–53

    Article  CAS  Google Scholar 

  • Sturtevant AH (1913) The linear arrangement of six sex-linked factors in Drosophila, as shown by their mode of association. J Exptl Zool 14:43–59

    Article  Google Scholar 

  • Sutton WS (1903) The chromosomes in heredity. Biol Bull 4:231–251

    Article  Google Scholar 

  • Watanabe T, Fukasawa T (1961) Episome-mediated transfer of drug resistance in Enterobacteriaceae ii.: elimination of resistance factors with acridine dyes. J Bact 81:679–683

    CAS  PubMed Central  PubMed  Google Scholar 

  • Watson JD (1968) The double helix. Atheneum, New York, pp 141–142

    Google Scholar 

  • Weil R, Vinograd J (1963) The cyclic helix and cyclic coil forms of polyoma viral DNA. Proc Natl Acad Sci USA 50:730–738

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Whitfield JF, Appleyard RK (1958) Recombination and phenotypic mixing during phage growth in strains of Escherichia coli doubly lysogenic for coliphage lambda. Virology 5:275–290

    Article  CAS  PubMed  Google Scholar 

  • Wollman E, Jacob F (1959) La sexualité des bactéries. Masson, Paris

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William C. Summers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Summers, W.C. (2015). Plasmids: Histories of a Concept. In: Gontier, N. (eds) Reticulate Evolution. Interdisciplinary Evolution Research, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-16345-1_6

Download citation

Publish with us

Policies and ethics