Skip to main content

Novel Endosymbioses as a Catalyst of Fast Speciation

  • Chapter
  • First Online:
Reticulate Evolution

Part of the book series: Interdisciplinary Evolution Research ((IDER,volume 3))

Abstract

Many symbiotic bacteria complete their life cycle inside eukaryotic cells. In arthropods, facultative endobacteria such as Wolbachia and Spiroplasma influence enormously the ecology and evolution of their hosts. In the last decades, the idea that endosymbiotic co-evolution can lead to host speciation has been proposed and, in some instances, verified. However, although usually transmitted vertically, these bacteria can also change host through horizontal transmission. After this transfer and in a virtually instantaneous fashion, endobacteria can alter the fitness of their new host by modifying its response to the environment and/or manipulating its reproduction. In this light, horizontally transmitted endosymbionts could strongly influence the evolutionary path taken by their new hosts. Here, we argue that from this evidence emerges a testable five-step scenario for the appearance of novel host lineages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed MZ, De Barro PJ, Ren SX, Greeff JM, Qiu BL (2013) Evidence for horizontal transmission of secondary endosymbionts in the Bemisia tabaci cryptic species complex. PLoS ONE 8:e53084

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baldo L, Ayoub NA, Hayashi CY, Russell JA, Stahlhut JK, Werren JH (2008) Insight into the routes of Wolbachia invasion: high levels of horizontal transfer in the spider genus Agelenopsis revealed by Wolbachia strain and mitochondrial DNA diversity. Mol Ecol 17:557–569

    Article  CAS  PubMed  Google Scholar 

  • Baumann P (2005) Biology bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu Rev Microbiol 59:155–189

    Article  CAS  PubMed  Google Scholar 

  • Bertaux J, Schmid M, Prevost-Boure NC, Churin JL, Hartmann A, Garbaye J, Frey-Klett P (2003) In situ identification of intracellular bacteria related to Paenibacillus spp. in the mycelium of the ectomycorrhizal fungus Laccaria bicolor S238N. Appl Environ Microbiol 69:4243–4248

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bianciotto V, Genre A, Jargeat P, Lumini E, Becard G, Bonfante P (2004) Vertical transmission of endobacteria in the arbuscular mycorrhizal fungus Gigaspora margarita through generation of vegetative spores. Appl Environ Microbiol 70:3600–3608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bordenstein SR (2003) Symbiosis and the origin of species. Insect Symbiosis

    Google Scholar 

  • Bordenstein SR, O’Hara FP, Werren JH (2001) Wolbachia-induced incompatibility precedes other hybrid incompatibilities in Nasonia. Nature 409:707–710

    Article  CAS  PubMed  Google Scholar 

  • Braig HR, Guzman H, Tesh RB, O’Neill SL (1994) Replacement of the natural Wolbachia symbiont of Drosophila simulans with a mosquito counterpart. Nature 367:453–455

    Article  CAS  PubMed  Google Scholar 

  • Brucker RM, Bordenstein SR (2012) Speciation by symbiosis. Trends Ecol Evol 27:443–451

    Article  PubMed  Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, Sunderland

    Google Scholar 

  • de Bary A (1879) The phenomenon of symbiosis. Strasbourg

    Google Scholar 

  • de Duve C (2007) The origin of eukaryotes: a reappraisal. Nat Rev Genet 8:395–403

    Article  PubMed  Google Scholar 

  • Dobson SL, Rattanadechakul W, Marsland EJ (2004) Fitness advantage and cytoplasmic incompatibility in Wolbachia single-and superinfected Aedes albopictus. Heredity 93:135–142

    Article  CAS  PubMed  Google Scholar 

  • Douglas AE (1994) Symbiotic interactions. Oxford University Press, New York

    Google Scholar 

  • Duron O, Wilkes TE, Hurst GDD (2010) Interspecific transmission of a male-killing bacterium on an ecological timescale. Ecol Lett 13:1139–1148

    Article  PubMed  Google Scholar 

  • Dyall SD, Brown MT, Johnson PJ (2004) Ancient invasions: from endosymbionts to organelles. Science 304:253–257

    Article  CAS  PubMed  Google Scholar 

  • Engelstadter J, Hurst GDD (2009) The ecology and evolution of microbes that manipulate host reproduction. Annu Rev Ecol Evol Syst 40:127–149

    Article  Google Scholar 

  • Faria VG, Sucena E (2013) Wolbachia in the malpighian tubules: evolutionary dead-end or adaptation? J Exp Zool B Mol Dev Evol 320:195–199

    Article  PubMed  Google Scholar 

  • Fast EM, Toomey ME, Panaram K, Desjardins D, Kolaczyk ED, Frydman HM (2011) Wolbachia enhance Drosophila stem cell proliferation and target the germline stem cell niche. Science 334:990–992

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frydman HM, Li JM, Robson DN, Wieschaus E (2006) Somatic stem cell niche tropism in Wolbachia. Nature 441:509–512

    Article  CAS  PubMed  Google Scholar 

  • Gehrer L, Vorburger C (2012) Parasitoids as vectors of facultative bacterial endosymbionts in aphids. Biol Lett 8:613–615

    Article  PubMed Central  PubMed  Google Scholar 

  • Gehrig H, Schussler A, Kluge M (1996) Geosiphon pyriforme, a fungus forming endocytobiosis with Nostoc (cyanobacteria), is an ancestral member of the Glomales: evidence by SSU rRNA analysis. J Mol Evol 43:71–81

    Article  CAS  PubMed  Google Scholar 

  • Gil-Turnes MS, Hay ME, Fenical W (1989) Symbiotic marine bacteria chemically defend crustacean embryos from a pathogenic fungus. Science 246:116–118

    Article  CAS  PubMed  Google Scholar 

  • Haselkorn TS, Markow TA, Moran NA (2009) Multiple introductions of the Spiroplasma bacterial endosymbiont into Drosophila. Mol Ecol 18:1294–1305

    Article  CAS  PubMed  Google Scholar 

  • Heath BD, Butcher RD, Whitfield WG, Hubbard SF (1999) Horizontal transfer of Wolbachia between phylogenetically distant insect species by a naturally occurring mechanism. Curr Biol 9:313–316

    Article  CAS  PubMed  Google Scholar 

  • Hedges LM, Brownlie JC, O’Neill SL, Johnson KN (2008) Wolbachia and virus protection in insects. Science 322:702

    Article  CAS  PubMed  Google Scholar 

  • Himler AG, Adachi-Hagimori T, Bergen JE, Kozuch A, Kelly SE, Tabashnik BE, Chiel E, Duckworth VE, Dennehy TJ, Zchori-Fein E, Hunter MS (2011) Rapid spread of a bacterial symbiont in an invasive whitefly is driven by fitness benefits and female bias. Science 332:254–256

    Article  CAS  PubMed  Google Scholar 

  • Hornett EA, Duplouy AM, Davies N, Roderick GK, Wedell N, Hurst GD, Charlat S (2008) You can’t keep a good parasite down: evolution of a male-killer suppressor uncovers cytoplasmic incompatibility. Evolution 62:1258–1263

    Article  PubMed  Google Scholar 

  • Huigens ME, de Almeida RP, Boons PA, Luck RF, Stouthamer R (2004) Natural interspecific and intraspecific horizontal transfer of parthenogenesis-inducing Wolbachia in Trichogramma wasps. Proc Biol Sci 271:509–515

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hurst GDD, Hutchence KJ (2010) Host defence: getting by with a little help from our friends. Curr Biol 20:R806–R808

    Article  CAS  PubMed  Google Scholar 

  • Hurst GDD, Schilthuizen M (1998) Selfish genetic elements and speciation. Heredity 80:2–8

    Article  Google Scholar 

  • Jaenike J (2007) Spontaneous emergence of a new Wolbachia phenotype. Evolution 61:2244–2252

    Article  PubMed  Google Scholar 

  • Jaenike J, Brekke TD (2011) Defensive endosymbionts: a cryptic trophic level in community ecology. Ecol Lett 14:150–155

    Article  PubMed  Google Scholar 

  • Jaenike J, Dyer KA, Cornish C, Minhas MS (2006) Asymmetrical reinforcement and Wolbachia infection in Drosophila. PLoS Biol 4:e325

    Article  PubMed Central  PubMed  Google Scholar 

  • Jaenike J, Polak M, Fiskin A, Helou M, Minhas M (2007) Interspecific transmission of endosymbiotic Spiroplasma by mites. Biol Lett 3:23–25

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jaenike J, Unckless R, Cockburn SN, Boelio LM, Perlman SJ (2010) Adaptation via symbiosis: recent spread of a Drosophila defensive symbiont. Science 329:212–215

    Article  CAS  PubMed  Google Scholar 

  • Jiggins FM, Bentley JK, Majerus ME, Hurst GD (2002) Recent changes in phenotype and patterns of host specialization in Wolbachia bacteria. Mol Ecol 11:1275–1283

    Article  PubMed  Google Scholar 

  • Le Clec’h W, Chevalier FD, Genty L, Bertaux J, Bouchon D, Sicard M (2013) Cannibalism and predation as paths for horizontal passage of Wolbachia between terrestrial isopods. PLoS ONE 8:e60232

    Article  PubMed Central  PubMed  Google Scholar 

  • Leonardo TE, Mondor EB (2006) Symbiont modifies host life-history traits that affect gene flow. Proc Biol Sci 273:1079–1084

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lersten NR, Horner HT (1976) Bacterial leaf nodule symbiosis in angiosperms with emphasis on Rubiaceae and Myrsinaceae. Bot Rev 42:145–214

    Article  Google Scholar 

  • Lima PT, Faria VG, Patraquim P, Ramos AC, Feijo JA, Sucena E (2009) Plant-microbe symbioses: new insights into common roots. BioEssays 31:1233–1244

    Article  CAS  PubMed  Google Scholar 

  • Mateos M, Castrezana SJ, Nankivell BJ, Estes AM, Markow TA, Moran NA (2006) Heritable endosymbionts of Drosophila. Genetics 174:363–376

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McGraw EA, Merritt DJ, Droller JN, O’Neill SL (2002) Wolbachia density and virulence attenuation after transfer into a novel host. Proc Natl Acad Sci USA 99:2918–2923

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mira A, Moran NA (2002) Estimating population size and transmission bottlenecks in maternally transmitted endosymbiotic bacteria. Microb Ecol 44:137–143

    Article  CAS  PubMed  Google Scholar 

  • Moran NA (2006) Symbiosis. Curr Biol 16:R866–R871

    Article  CAS  PubMed  Google Scholar 

  • Moran NA, Wernegreen JJ (2000) Lifestyle evolution in symbiotic bacteria: insights from genomics. Trends Ecol Evol 15:321–326

    Article  PubMed  Google Scholar 

  • Moran NA, McCutcheon JP, Nakabachi A (2008) Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 42:165–190

    Article  CAS  PubMed  Google Scholar 

  • Nieberding CM, Olivieri I (2007) Parasites: proxies for host genealogy and ecology? Trends Ecol Evol 22:156–165

    Article  PubMed  Google Scholar 

  • Oldroyd GE, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546

    Article  CAS  PubMed  Google Scholar 

  • Oliver KM, Russell JA, Moran NA, Hunter MS (2003) Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc Natl Acad Sci USA 100:1803–1807

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oliver KM, Degnan PH, Burke GR, Moran NA (2010) Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annu Rev Entomol 55:247–266

    Article  CAS  PubMed  Google Scholar 

  • Osteryoung KW, Nunnari J (2003) The division of endosymbiotic organelles. Science 302:1698–1704

    Article  CAS  PubMed  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    Article  CAS  PubMed  Google Scholar 

  • Partida-Martinez LP, Hertweck C (2005) Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 437:884–888

    Article  CAS  PubMed  Google Scholar 

  • Ruby EG (2008) Symbiotic conversations are revealed under genetic interrogation. Nat Rev Microbiol 6:752–762

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Russell JA, Moran NA (2005) Horizontal transfer of bacterial symbionts: heritability and fitness effects in a novel aphid host. Appl Environ Microbiol 71:7987–7994

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Russell JA, Latorre A, Sabater-Munoz B, Moya A, Moran NA (2003) Side-stepping secondary symbionts: widespread horizontal transfer across and beyond the Aphidoidea. Mol Ecol 12:1061–1075

    Article  CAS  PubMed  Google Scholar 

  • Sapp J (1994) Evolution by association: a history of symbiosis. Oxford University Press, New York

    Google Scholar 

  • Sasaki T, Kubo T, Ishikawa H (2002) Interspecific transfer of Wolbachia between two lepidopteran insects expressing cytoplasmic incompatibility: a Wolbachia variant naturally infecting Cadra cautella causes male killing in Ephestia kuehniella. Genetics 162:1313–1319

    PubMed Central  PubMed  Google Scholar 

  • Sasaki T, Massaki N, Kubo T (2005) Wolbachia variant that induces two distinct reproductive phenotypes in different hosts. Heredity 95:389–393

    Article  CAS  PubMed  Google Scholar 

  • Scarborough CL, Ferrari J, Godfray HC (2005) Aphid protected from pathogen by endosymbiont. Science 310:1781

    Article  CAS  PubMed  Google Scholar 

  • Schilthuizen M, Stouthamer R (1997) Horizontal transmission of parthenogenesis-inducing microbes in Trichogramma wasps. Proc Biol Sci 264:361–366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sheeley SL, McAllister BF (2009) Mobile male-killer: similar Wolbachia strains kill males of divergent Drosophila hosts. Heredity 102:286–292

    Article  CAS  PubMed  Google Scholar 

  • Shoemaker DD, Katju V, Jaenike J (1999) Wolbachia and the evolution of reproductive isolation between Drosophilla recens and Drosophila subquinaria. Evolution 53:1157–1164

    Article  Google Scholar 

  • Tarkka MT, Sarniguet A, Frey-Klett P (2009) Inter-kingdom encounters: recent advances in molecular bacterium-fungus interactions. Curr Genet 55:233–243

    Article  CAS  PubMed  Google Scholar 

  • Teixeira L, Ferreira A, Ashburner M (2008) The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol 6:e2

    Article  PubMed  Google Scholar 

  • Telschow A, Hammerstein P, Werren JH (2002) The effect of Wolbachia on genetic divergence between populations: models with two-way migration. Am Nat 160(Suppl 4):S54–S66

    Article  PubMed  Google Scholar 

  • Telschow A, Hammerstein P, Werren JH (2005) The effect of Wolbachia versus genetic incompatibilities on reinforcement and speciation. Evolution 59:1607–1619

    Article  PubMed  Google Scholar 

  • Thao ML, Clark MA, Baumann L, Brennan EB, Moran NA, Baumann P (2000) Secondary endosymbionts of psyllids have been acquired multiple times. Curr Microbiol 41:300–304

    Article  CAS  PubMed  Google Scholar 

  • Thompson JN (1987) Symbiont-induced speciation. Biol J Linn Soc 32:385–393

    Article  Google Scholar 

  • Tinsley MC, Majerus ME (2007) Small steps or giant leaps for male-killers? Phylogenetic constraints to male-killer host shifts. BMC Evol Biol 7:238

    Article  PubMed Central  PubMed  Google Scholar 

  • Tram U, Sullivan W (2002) Role of delayed nuclear envelope breakdown and mitosis in Wolbachia-induced cytoplasmic incompatibility. Science 296:1124–1126

    Article  CAS  PubMed  Google Scholar 

  • Tsuchida T, Koga R, Fukatsu T (2004) Host plant specialization governed by facultative symbiont. Science 303:1989

    Article  CAS  PubMed  Google Scholar 

  • Tsuchida T, Koga R, Horikawa M, Tsunoda T, Maoka T, Matsumoto S, Simon JC, Fukatsu T (2010) Symbiotic bacterium modifies aphid body color. Science 330:1102–1104

    Article  CAS  PubMed  Google Scholar 

  • Tsuchida T, Koga R, Matsumoto S, Fukatsu T (2011) Interspecific symbiont transfection confers a novel ecological trait to the recipient insect. Biol Lett 7:245–248

    Article  PubMed Central  PubMed  Google Scholar 

  • Vala F, Egas M, Breeuwer JA, Sabelis MW (2004) Wolbachia affects oviposition and mating behaviour of its spider mite host. J Evol Biol 17:692–700

    Article  CAS  PubMed  Google Scholar 

  • Vallet-Gely I, Lemaitre B, Boccard F (2008) Bacterial strategies to overcome insect defences. Nat Rev Microbiol 6:302–313

    Article  CAS  PubMed  Google Scholar 

  • Vavre F, Fleury F, Lepetit D, Fouillet P, Bouletreau M (1999) Phylogenetic evidence for horizontal transmission of Wolbachia in host-parasitoid associations. Mol Biol Evol 16:1711–1723

    Article  CAS  PubMed  Google Scholar 

  • Veneti Z, Toda MJ, Hurst GD (2004) Host resistance does not explain variation in incidence of male-killing bacteria in Drosophila bifasciata. BMC Evol Biol 4:52

    Article  PubMed Central  PubMed  Google Scholar 

  • Werren JH, O’Neill SL (1997) The evolution of heritable symbionts. Influential passengers. Oxford University Press, Oxford

    Google Scholar 

  • Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6:741–751

    Article  CAS  PubMed  Google Scholar 

  • White JA (2011) Caught in the act: rapid, symbiont-driven evolution: endosymbiont infection is a mechanism generating rapid evolution in some arthropods-but how widespread is the phenomenon? BioEssays 33:823–829

    Article  CAS  PubMed  Google Scholar 

  • Zchori-Fein E, Gottlieb Y, Kelly SE, Brown JK, Wilson JM, Karr TL, Hunter MS (2001) A newly discovered bacterium associated with parthenogenesis and a change in host selection behaviour in parasitoid wasps. Proc Natl Acad Sci USA 98:12555–12560

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Filipa Vala, Margarida Matos, Sara Magalhães, Thiago Carvalho, Patrícia Beldade, Pedro Lima, Inês Trancoso and Alexandre Leitão for discussions and for the critical reading of the manuscript. This work was supported by Fundação para a Ciência e a Tecnologia (FCT), Portugal (PPCDT/BIA-BDE/60950/2004 and POCTI/0664/2004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vitor G. Faria or Élio Sucena .

Editor information

Editors and Affiliations

Glossary

Arthropods

Arthropods belong to the phylum of Arthropoda and include insects and other animal that are characterized by an exoskeleton, a segmented body part and jointed appendages.

Aphids

Aphids are small sap-sucking insects belonging to the Aphidoidea, and include plant lice as well as green-, black- and whiteflies.

Endosymbionts versus ectosymbionts

Endosymbionts are all organisms that live on the surface of their host, while ectosymbionts are all organisms that live inside their host (in the gastrointestinal tract, airways, lymphatic systems).

Obligate symbionts versus facultative symbionts

Obligate symbionts entertain a symbiotic association with their host that is either necessary for the symbiont or the host or both, while facultative symbionts are not necessary for either the symbiont or the host’s survival.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Faria, V.G., Sucena, É. (2015). Novel Endosymbioses as a Catalyst of Fast Speciation. In: Gontier, N. (eds) Reticulate Evolution. Interdisciplinary Evolution Research, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-16345-1_4

Download citation

Publish with us

Policies and ethics