Skip to main content

Symbiosis—Evolution’s Co-Author

  • Chapter
  • First Online:
Reticulate Evolution

Part of the book series: Interdisciplinary Evolution Research ((IDER,volume 3))

Abstract

Symbiotic integration is a primary contributor to the centerpiece of evolution, genetic novelty. Acquisition of foreign organisms or parts thereof, and potential subsequent assimilation and often internalization of one or several different genomes into another different entity are the foundational expressions upon which natural selection acts, particularly in eukaryotic organisms. Thus, the entire landscape of life—from cells to biomes—is substantially an evolving collection of chimeric communities. Competition may be pronounced and successful in evolution in large part because the competing organisms do not function as, and indeed are not, individuals. Moreover, growing evidence indicates symbiosis to be on a flexible continuum of physiological expression, often with real plasticity in the organisms’ integrating life cycles. Therefore, so-called “mutualism”, “parasitism”, and “commensalism” as symbiotic reference points and analyses may be outdated and perhaps of dubious use. For example, fundamental ecological principles show us that “parasitism” among two different organisms is often of significant advantage to not only the “parasite” but its “host.” Symbiosis system examples are here reviewed and redefined on a more meaningful evolutionary context; namely, symbiosis is the acquisition of one organism(s) by another different organism(s), and through subsequent long-term integration, new structures and metabolism emerge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams AS, Aylward FO, Adams SM, Erbilgin N, Aukema BH, Currie CR, Suen G, Raffa K (2013) Mountain pine beetles colonizing historical and naïve host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism. Appl Environ Microbiol 79(11):3468–3475

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ahmadjian V (1993) The lichen symbiosis. Wiley, New York

    Google Scholar 

  • Ahmadjian V, Jacobs JB (1981) Relationship between fungus and alga in the lichen Cladonia cristatella Tuck. Nature 289:169–172

    Google Scholar 

  • Alegado RA, Brown LW, Cao S, Dermenjian RK, Zuzow R, Fairclough SR, Clardy J, King N (2012) A bacterial sulfonolipid triggers multicellular development in the closest living relatives of animals. eLife. doi:10.7554/eLife.00013

  • Archibald JM (2009) The puzzle of plastid evolution. Curr Biol 19:R81–R88. doi:10.1016/j.cub.2008.11.067

  • Archibald JM (2011) Origin of eukaryotic cells: 40 years on. Symbiosis 54:69–86. doi:10.1007/sI3199-011-0129-z

    Google Scholar 

  • Attardo GM, Attardo M, Lohs C, Heddi A, Alam UH, Yildirim S, Aksoy S (2008) Analysis of milk gland structure and function in Glossina morsitans: milk protein production, symbiont populations and fecundity. J Insect Physiol 54(8):1236–1242

    CAS  PubMed Central  PubMed  Google Scholar 

  • Balmond S, Lohs C, Aksoy S, Heddi A (2013) Tissue distribution routes for the tsetse fly endosymbionts. J Invertebr Pathol 112:S116–S122

    Google Scholar 

  • Baumann P (2005) Biology of bactericyte-associated endosymbiosis of plant sap-sucking insects. Annu Rev Microbiol 59:155–189

    CAS  PubMed  Google Scholar 

  • Bhattacharya D, Yoon HS, Hackett JD (2003) Photosynthetic eukaryotes unite: endosymbiosis connects the dots. BioEssays 26:50–60

    Google Scholar 

  • Bhattacharya D, Pelletreau KN, Price DC, Sarver KE, Rumpho ME (2013) Genome analysis of Elysia chlorotica egg DNA provides no evidence for horizontal gene transfer into the germ line of this kleptoplastic mollusc. Mol Biol Evol 30(8):1843–1852. doi:10.1093/molbev/mst084

  • Bidartondo MI, Read DJ, Trappe JM, Merck J, Ligrone R, Duckett JG (2011) The dawn of symbiosis between plants and fungi. Biol Lett 7:574–577

    PubMed Central  PubMed  Google Scholar 

  • Bilger W, Budel B, Mollenhauer R, Mollenhauer D (2004) Photosynthetic activity of two developmental stages of a Nostoc strain isolated from Geosiphon pyriforme. J Phycol 30(2):225–230

    Google Scholar 

  • Bleiker K, Six D (2008) Competition and coexistence in a multi-partner mutualism: interactions between two fungal symbionts of the mountain pine beetle in beetle-attacked trees. Microb Ecol 57:191–202

    PubMed  Google Scholar 

  • Boone C, Keefover-Ring K, Mapes AC, Adams AS, Bohlmann J, Raffa RF (2013) Bacteria associated with a tree-killing insect reduce concentrations of plant defense compounds. J Chem Ecol 39(7 special issue):1003–1006

    Google Scholar 

  • Bright M, Bulgheresi S (2010) A complex journey: transmission of microbial symbionts. Nat Rev Microb 8(3):218–230

    CAS  Google Scholar 

  • Cantin NE, van Oppen MJH, Willis BL, Mieong JC, Negri AP (2009) Juvenile corals can acquire more carbon from high-performance algal symbionts. Coral Reefs 28:405–414

    Google Scholar 

  • Cardinale M, Puglia AM, Grube M (2006) Molecular analysis of lichen-associated bacterial communities. FEMS Microbiol Ecol 57:484–495

    CAS  PubMed  Google Scholar 

  • Chung H, Pamp SJ, Hill JA, Surana NK, Edelman SM, Troy EB, Reading NC, Villablanca EJ, Wang S, Mora JR, Umesaki Y, Mathis D, Benoist C, Relman DA, Kasper DL (2012) Gut immune maturation depends on colonization with a host-specific microbiota. Cell 149:1578–1593

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clemente JC, Pehrsson EC, Blaser M, Kuldip S, Zhan G, Wang B, Magris M, Hidalgo G, Contreras M, Noya-Alarcón Ó, Lander O, McDonald J, Cox M, Walter J, Oh PL, Ruiz JF, Rodriguez S, Shen N, Song SJ, Metcalf J, Knight R, Dantas G, Dominguez-Bello MG (2015) The microbiome of uncontacted Amerindians. Science Advances 1(3). doi:10.1126/sciadv.1500183

  • Daniel DS, Ng YK, El Chua, Arumugam Y, Wey LW, Kumaran JV (2013) Isolation and identification of gastrointestinal microbiota from the short-nosed fruit bat Cynopterus brachyotis brachyotis. Microbiol Res 168(8):485–496

    PubMed  Google Scholar 

  • Darwin C (1858) The variation of animals and plants under domestication, vol 2. Orgame Judd, New York

    Google Scholar 

  • Darwin C (1859) On the origin of species. Empire Press, New York (reprint 2011)

    Google Scholar 

  • Daskin JH, Alford RA (2012) Context-dependent symbioses and their potential roles in wildlife diseases. Proc R Soc B. doi:10.1098/rspb.2011.2276

  • De Bary A (1879) Die Erscheinung der Symbiose. In: Vortrag auf der Versammlung der Naturforscher und Arzte zu Cassel. KJ Trübner, Strassburg

    Google Scholar 

  • Delwiche CF (1999) Tracing the thread of plastid diversity through the tapestry of life. Am Nat 54:S164–S177

    Google Scholar 

  • Douglas AE (1994) Symbiotic interactions. Oxford University Press, Oxford (out of print)

    Google Scholar 

  • Douglas AE (2010) The symbiotic habit. Princeton University Press, Princeton

    Google Scholar 

  • Eaton CJ, Cox MP, Scott B (2011) What triggers grass endophytes to switch from mutualism to pathogenism? Plant Sci 180:190–195

    CAS  PubMed  Google Scholar 

  • Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638

    PubMed Central  PubMed  Google Scholar 

  • Forsythe P, Nobuyuki S, Dinan T, Taylor VH, Bienenstock J (2010) Mood and gut feelings. Brain Behav Immun 24:9–16

    PubMed  Google Scholar 

  • Gilbert PW (1942) Observations on the eggs of Ambystoma maculatum with special reference to the green algae found within the egg envelopes. Ecol 23:215–227

    Google Scholar 

  • Gilbert SF, Sapp J, Tauber AI (2012) A symbiotic view of life: we have never been individuals. Q Rev Biol 87(4):325–341. doi:10.1086/668166

    PubMed  Google Scholar 

  • Goff LJ, Stein JR (1978) Ammonia: basis for algal symbiosis in salamander egg masses. Life Sci 22:1463–1468

    CAS  PubMed  Google Scholar 

  • Goreau TF, Goreau NI, Goreau TJ (1979) Corals and coral reefs. Sci Am (August):124–136

    Google Scholar 

  • Graham ER, Fay SA, Davey A, Sanders RW (2013) Intracapsular algae provide fixed carbon to developing embryos of the salamander Ambystoma maculatum. J Exp Biol 216(3):452–459

    CAS  PubMed  Google Scholar 

  • Grube M, Cardinale M, de Castro Jr JV, Müller H, Berg G (2009) Species-specific structural and functional diversity of bacterial communities in lichen symbioses. ISME J 3:1105–1115

    PubMed  Google Scholar 

  • Hammen CS (1962) Carbon dioxode assimilation in the symbiosis of the salamander Ambystoma maculatum and the alga Oophila amblystomatis. Life Sci 10:527–532

    Google Scholar 

  • Harris RN, Lauer A, Simon MA, Banning JL, Alford RA (2009) Addition of antifungal skin bacteria to salamanders ameliorates the effects of chyridiomycosis. Dis Aquat Org 83(1):11–16

    PubMed  Google Scholar 

  • Holligan PM, Vollier M, Harbour DS, Camus P, Champagnephilippe M (1983) Satellite and ship studies of coccolithophore production along a continental shelf edge. Nature 304:339–342

    CAS  Google Scholar 

  • Honegger R, Edwards D, Axe L (2009) The earliest records of internally stratified cyanobacterial and algal lichens from the Lower Devonian of the Welsh Borderland. New Phytol 197(1):264–275

    Google Scholar 

  • Honegger R, Axe L, Edwards D (2013) Bacterial epibionts and endolichenic actinobacteria and fungi in the Lower Devonian lichen Chlorolichenomycites salopensis. Fungal Biol 117(7–8):512–518

    CAS  PubMed  Google Scholar 

  • Husnik F, Naruo N, Koga R, Ross L, Duncan RP, Fujie M, Tanaka M, Satoh N, Bachtrog D, Wilson ACC, von Dohlen CD, Fukatsu T, McCutcheon JP (2013) Horizontal gene transfer from diverse bacteria to an insect genome enables tripartite nested mealybug symbiosis. Cell 153:1567–1578

    CAS  PubMed  Google Scholar 

  • Huxley T (1868) On a piece of chalk. MacMillan’s Mag (reprint available: Kessinger Publishing, LLC 2010)

    Google Scholar 

  • Inagaki Y, Dacks JB, Doolittle WF, Watanabe KI, Ohama T (2000) Evolutionary relationship between dinoflagellates bearing obligate diatom endosymbionts: insight into tertiary endosymbiosis. Int J Syst Evol Microbiol 50:275–281

    Google Scholar 

  • Jaenike J, Unckless R, Cockburn SN, Boelio LM, Perlman SJ (2010) Adaptation via symbiosis: recent spread of a Drosophila defensive symbiont. Science 329:212–215

    CAS  PubMed  Google Scholar 

  • Janzen DH (1979) How to be a fig. Ann Rev Ecol Syst 10:13–51

    Google Scholar 

  • Jarzen DM (1980) The occurrence of Gunnera pollen in the fossil record. Biotropica 12:117–123

    Google Scholar 

  • Jeon KW (1995) The large, free-living amoebae: wonderful cells for biological studies. J Eukaryot Microbiol 42:1–7

    CAS  PubMed  Google Scholar 

  • Jeon KW, Lorch IJ (1967) Unusual intra-cellular bacterial infection in large, free-living amoebae. Exp Cell Res 48:236–240

    CAS  PubMed  Google Scholar 

  • Johnson NC (1993) Can fertilization of soil select less mutualistic mycorrhizae? Bull Ecol Soc Am 3(4):749–757

    Google Scholar 

  • Karatygin IV, Snigirevskaya NS, Vikulin SV (2009) The most ancient terrestrial lichen Winfrenatia retuculata: a new find and new interpretation. Paleontol J 43(1):107–114

    Google Scholar 

  • Kerney R (2011) Symbiosis between salamander embryos and green algae. Symbiosis 54(3):107–117

    Google Scholar 

  • Kerney T, Kim E, Hangarter R, Heiss AA, Bishop CD, Hall BK (2011) Intracellular invasion of green algae in a salamander host. Proc Nat Acad Sci USA 108(16):6497–6502

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kiers T, Palmer TM, Ives AB, Bruno JF, Bronstein JL (2010) Mutualisms in a changing world: An evolutionary perspective. Ecol Lett 13:1459–1474

    Google Scholar 

  • Kilpatrick AM, Briggs CJ, Daszak P (2010) The ecology and impact of chytridiomycosis: an emerging disease of amphibians. Trends Ecol Evol 25(2):109–118

    PubMed  Google Scholar 

  • Koga R, Tsuchida T, Fukatsu T (2003) Changing partners in an obligate symbiosis: a facultative endosymbiont can compensate for loss of the essential endosymbiont Buchnera in an aphid. Proc R Soc Lond B 270:2543–2550

    Google Scholar 

  • Kozo-Polyansky BM (1924) Novyi printsip biologii: ocherk teorii simbiogeneza (The new principle of biology: an essay on the theory of symbiogenesis). Puchina, Moscow-Leningrad

    Google Scholar 

  • Kozo-Polyansky BM (2010) Symbiogenesis: a new principle of evolution (trans: Fet V, Fet V, Margulis L (eds)). Harvard University Press, Cambridge

    Google Scholar 

  • Krings M, Kerp H, Hass H, Taylor TN, Dotzler N (2007a) A filamentous cyanobacterium showing structured colonial growth from the Early Devonian Rhynie chert. Rev Palaeobot Palynol 146:265276

    Google Scholar 

  • Krings M, Taylor TN, Hass H, Kerp H, Dotzler N, Hermsen EJ (2007b) Fungal endophytes in a 400-million-yr-old land plant: infection pathways, spatial distribution, and host responses. New Phytol 174:648657

    Google Scholar 

  • Lamarck JB (1809) Philosophie zoologique: an exposition with regard to the natural history of animals. Cambridge University Press, Cambridge (reprint 2011)

    Google Scholar 

  • Lewis LA, McCourt RM (2004) Green algae and the origin of land plants. Am J Bot 91:1535–1556

    PubMed  Google Scholar 

  • Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Human guts associated with obesity. Nature 444:1022–1023

    CAS  PubMed  Google Scholar 

  • Little AEF, Currie CR (2008) Black yeast symbionts compromise the efficiency of antibiotic defense in fungus-growing ants. Ecology 89(5):1216–1222

    PubMed  Google Scholar 

  • Lopez-Madrigal MJ, Latorre A, Porcar M, Moya A, Gil R (2011) Complete genome sequence of “Candidatus Tremblaya princeps” strain PCVAL, an intriguing translational machine below the living-cell status. J Bacteriol 193:5587–5588

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ludwig M, Gibbs SP (1985) DNA is present in the nucleomorph of cryptomonads—further evidence that the chloroplast evolved from a eukaryotic endosymbiont. Protoplasma 127(1–2):9–20

    Google Scholar 

  • Lutzoni F, Pagel M (1997) Accelerated evolution as a consequence of transitions to mutualism. Proc Nat Acad Sci USA 94(21):11422–11427

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lutzoni F, Pagel M, Reeb V (2001) Major fungal lineages are derived from lichen symbiotic ancestors. Nature 411:937–940

    CAS  PubMed  Google Scholar 

  • Ma WC, Denlinger DL (1974) Secretory discharge and microflora of milk gland in tsetse flies. Nature 247:301–303

    Google Scholar 

  • Margulis L (1990) Words as battle cries—symbiogenesis and the new field of endocytobiology. Bioscience 40(9):673–677

    CAS  PubMed  Google Scholar 

  • Margulis L (2009) Recorded interview at Boston University conducted by Douglas Zook, videorecorder Michael Lee, audio/video editor Divya Mahdavan

    Google Scholar 

  • Margulis L, Fet V (2010) Symbiogenesis: a new principle of evolution. The rediscovery of Boris Mikhaylovich Kozo-Polyansky (1890–1957). Paleontological J 44(12):1525–1539

    Google Scholar 

  • Margulis L, Fester R (1991) Symbiosis as a source of evolutionary innovation: speciation and morphogenesis. MIT Press, Boston

    Google Scholar 

  • Martinson VG, Danforth BN, Minckley RL, Rueppell O, Tingek S, Moran N (2011) A simple and distinctive microbiota associated with honey bees and bumble bees. Mol Ecol 20(3):619–628

    PubMed  Google Scholar 

  • Martin-Vivaldi M, Aránzazu P, Peralta-Sanchez JM, Sánchez L, Ananou S, Ruiz-Rodriguez M, Soler JJ (2010) Antimicrobial chemicals in hoopoe preen secretions are produced by symbiotic bacteria. Proc R Soc B 277:123–130

    CAS  PubMed Central  PubMed  Google Scholar 

  • McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Loso T, Douglas AE, Dubilier N, Eberl G, Fukami T, Gilbert SF, Hentschel U, King N, Kjelleberg S, Knoll AH, Kemer N, Mazmanian SK, Metcalf JL, Nealson K, Pierce NE, Rawls JF, Reid A, Ruby EG, Rumpho M, Sanders JG, Tautz R, Wernegreen JJ (2013) Animals in a bacterial world, a new imperative for the life sciences. Proc Nat Acad Sci USA 110(9):3229–3236. doi:10.1073/pnas.1218525110

  • Minteer BA, Collins JP (2008) From environmental to ecological ethics: toward a practical ethics for ecologists and conservationists. Sci Eng Ethics 14(4):483–501

    PubMed  Google Scholar 

  • Montilor CB, Maxmen A, Purcell AH (2002) Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol Entom 27:189–195

    Google Scholar 

  • Moore CE, Archibald JM (2009) Nucleomorph genomes. Ann Rev Gen 43:251–264

    CAS  Google Scholar 

  • Moran N, Munson MA, Baumann P, Ishikawa H (1993) A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts. Proc R Soc Lond B 253:167–171

    Google Scholar 

  • Mueller UG, Currie CR, Schultz TR, Adams RM, Malloch D (2001) The origin of the attine ant-fungus mutualism. Q Rev Biol 76(2):169–197

    CAS  PubMed  Google Scholar 

  • Myers JM, Ramsey JM, Blackman JP, Alison L, Blackman A, Nichols AE, Minbiole KPC, Harris RN (2012) Synergistic inhibition of the lethal fungal pathogen Batrachochytrium dendrobatidis: the combined effect of symbiotic bacterial metabolites and antimicrobial peptides of the frog Rana muscosa. J Chem Ecol 38(8):958–965

    PubMed  Google Scholar 

  • Nass MMK (1969) MitochondriaL DNA: advances, problems, and goals. Science 165:25–35

    CAS  PubMed  Google Scholar 

  • Nass MM, Nass S (1963) Intra-mitochondrial fibers with DNA characteristics: fixation and electron staining reaction. J Cell Biol 19(3):593–611

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nelson KE, Weinstock GM, Highlander SK, Worley KC, Creasy HH, Wortman JR, Busch DB, Makedonka M, Sodergren E, Chinwalla AT, Feldgarden M, Gevers D, Haas BJ, Madupu R, Ward DV (2010) A catalog of reference genomes from the human microbiome. Science 328:994–999

    CAS  PubMed  Google Scholar 

  • Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S (2012) Host-gut microbiota metabolic reactions. Science 336:1262–1267

    CAS  PubMed  Google Scholar 

  • Palmer JD (2003) The symbiotic birth and spread of plastids: how many times and whodunit? J Phycol 39:4–11

    CAS  Google Scholar 

  • Pepper JW, Rosenfeld S (2012) The merging medical ecology of the human microbiome. Trends Ecol Evol 27(7):381–384

    PubMed Central  PubMed  Google Scholar 

  • Phillips CD, Phelan G, Dowd SE, McDonough MM, Ferguson AW, Hanson JD, Siles L, Ordonez-Garcia N, San Francisco M, Baker RJ (2012) Microbiome analysis among bats describes influences of host phylogeny, life history, physiology and geography. Mol Ecol 21(11):2617–2627

    PubMed  Google Scholar 

  • Piercy-Normore MD, Depriest PT (2001) Algal switching among lichen symbioses. Am J Bot 88(8):1490–1498

    Google Scholar 

  • Pirozynski KA, Malloch DW (1975) Origin of land plants—matter of mycotropism. Biosystems 6(3):153–164

    CAS  PubMed  Google Scholar 

  • Poulsen M, Cafaro M, Erhardt D, Little AEF, Gerardo NM, Tebbets B, Klein BS, Currie CR (2010) Variation in Pseudonocardia antibiotic defense helps govern parasite-induced morbidity in Acromyrex leafcutting ants. Environ Microbiol Rep 2(4):534–540

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raffa K, Piwell EN, Townsend PA (2013) Temperature-driven range expansion of an irruptive insect heightened by weakly co-evolved plant defenses. Proc Nat Acad Sci USA 110(6):2193–2198

    CAS  PubMed Central  PubMed  Google Scholar 

  • Redman RS, Dunigan DD, Rodriguez RJ (2001) Fungal symbiosis from mutualism to parasitism: who controls the outcome, host or invader? New Phytol 151(3):705–716

    Google Scholar 

  • Rosenberg E, Zilber-Rosenberg I (2011) Symbiosis and development: the hologenome concept. Birth Defects Res (Part c) 93:56–66

    CAS  Google Scholar 

  • Rosenberg E, Sharon G, Zilber-Rosenberg I (2009) The hologene theory of evolution: a fusion of neo-Darwinism and Lamarckism. Environ Microbiol 11:2959–2962

    PubMed  Google Scholar 

  • Rowher F, Seguritan V, Azam F, Knowlton N (2002) Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser 243:1–10

    Google Scholar 

  • Russell JA, Moreau CS, Goldman-Huertas B, Fuliwara M, Lohman DJ, Pierce NE (2009) Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants. Proc Nat Acad Sci USA 106(50):21236–21241

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sagan L (Margulis) (1967) On the origin of mitosing cells. J Theor Biol 14(3):255–274

    Google Scholar 

  • Sang RC, Jura WG, Otieno LH, Mwangi RW, Pgaja P (1999) The effects of a tsetse fly virus infection on the functions of the male accessory reproductive gland in the host fly Glossina pallidipes (Diptera:Glossinidae). Curr Microbiol 38:349–354

    CAS  PubMed  Google Scholar 

  • Sapp J (1994) Evolution by association: a history of symbiosis. Oxford University Press, Oxford

    Google Scholar 

  • Schardl CL (2001) Epichloë festucae and related mutualistic symbionts of grasses. Fungal Genet Biol 33:69–82

    CAS  PubMed  Google Scholar 

  • Schopf JW (1999) Cradle of life: the discovery of earth’s earliest fossils. Princeton University Press, Princeton, pp 183–200

    Google Scholar 

  • Schopf JW, Kudryavlsev AB (2012) Biogenicity of Earth’s earliest fossils: a resolution of the controversy. Gondwana Res 22(3–4):761–777

    Google Scholar 

  • Schüssler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Google Scholar 

  • Seipke RF, Kaltenpoth M, Hutchings MJ (2011) Streptomyces as symbionts: an emerging and widespread theme? FEMS Microbiol Rev 36:862–876

    PubMed  Google Scholar 

  • Selosse M-A, Le Tacon F (1998) The land flora: a phototroph-fungus partnership? Trends Ecol Evol 13(1):15–29

    CAS  PubMed  Google Scholar 

  • Shutler JD, Grant MG, Miller PI, Rushton E, Anderson K (2010) Coccolithophore bloom detection in the northeast Atlantic using SeaWiFS: algorithm description, application and sensitivity analysis. Remote Sens Environ 114(5):1008–1016

    Google Scholar 

  • Six D (2012) Ecological and evolutionary determinants of bark beetle symbioses. Insects 3:339–366

    Google Scholar 

  • Six D (2013) The bark beetle holobiont: why microbes matter. J Chem Ecol 39:989–1002

    CAS  PubMed  Google Scholar 

  • Snyder AK, Rio RVM (2013) Interwoven biology of the tsetse holobiont. J Bacteriol 195(19):4322–4330

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stallforth P, Brock DA, Cantley AM, Tian X, Queller D, Strassman JE, Clardy J (2013) A bacterial symbiont is converted from an inedible producer of beneficial molecules into food by a single mutation in the gacA gene. Proc Nat Acad Sci USA 110(36):14528–14533

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stat M, Carter D, Hoegh-Guldberg O (2006) The evolutionary history of Symbiodinium and scleractinan hosts—symbiosis, diversity, and the effect of climate change. Persp Plant Ecol Evol Syst 8(1):23–43

    Google Scholar 

  • Stevens CE, Hume ID (1998) Contributions of microbes in vertebrate gastrointestinal tract to production and conservation of nutrients. Physiol Rev 78(2):393–427

    CAS  PubMed  Google Scholar 

  • Tanaka A, Takemoto D, Hyon GS, Park P, Scott B (2008) NoxA activation by the small GTPase RacA is required to maintain a mutualistic symbiotic association between Epichloë festucae and perennial ryegrass. Mol Microbiol 68:1165–1178

    CAS  PubMed  Google Scholar 

  • Taylor TN, Krings M (2005) Fossil microorganisms and land plants: associations and interactions. Symbiosis 40:119–135

    CAS  Google Scholar 

  • Taylor TN, Remy W, Hass H, Kerp H (1995) Fossil arbuscular mycorrhizae from the Early Devonian. Mycologia 87:560–573

    Google Scholar 

  • Thacker RW, Freeman CJ (2012) Sponge-microbe symbiosis: recent advances and new directions. Adv Mar Biol 62:67–111

    Google Scholar 

  • Turmel M, Pombert JF, Charlebois P, Otis C, Lemieux C (2007) The green algal ancestry of land plants as revealed by the chloroplast genome. J Plant Sci 168(5):679–689

    CAS  Google Scholar 

  • Turnau K, Gawronski S, Ryszka P, Zook D (2012) Mycorrhizal-based phytostabilization of Zn–Pb tailings: lessons from the Trzebionka mining works (southern Poland). In: Kothe E, Varma A (eds) Bio-geo interactions in metal-contaminated soils. Soil Biology 31:327–348. Springer, Berlin

    Google Scholar 

  • Vesteg M, Vacula R, Krajcovic J (2009) On the origin of chloroplast, import mechanisms of chloroplast-targeted proteins, and loss of photosynthetic ability—a review. Folio Microbiol 54(4):303–321

    CAS  Google Scholar 

  • Wang X (2002) Evidences for vagus nerve in maintenance of immune balance and transmission of immune information from gut to brain in STM-infected rats. World J Gastroenterol 8:540–545

    PubMed  Google Scholar 

  • Wang J, Aksoy S (2012) PGRP-LB is a maternally transmitted immune milk protein that influences symbiosis and parasitism in tsetse’s offspring. Proc Natl Acad Sci USA 109:10552–10557

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang B, Qui YL (2006) Phylogenic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16(5):299–363

    CAS  PubMed  Google Scholar 

  • Weiss BI, Maltz M, Aksoy S (2012) Obligate symbiosis activate immune system development in the tsetse fly. J Immunol 188:3195–3403

    Google Scholar 

  • Werren JH (1997) Biology of Wolbachia. Ann Rev Entomol 42:587–609

    CAS  Google Scholar 

  • Werren JH, Baldo I, Clark ME (2008) Master manipulators of invertebrate biology. Nat Rev Microbiol 6:741–751

    CAS  PubMed  Google Scholar 

  • Wooldridge SA (2010) Is the coral-algae symbiosis really “mutually beneficial” for the partners? BioEssays 32(12):615–625

    CAS  PubMed  Google Scholar 

  • Wodniok S, Brinkmann H, Gloeckner G, Heidel AJ, Philippe H, Melkonian M, Becker B (2011) Origin of land plants: do conjugating green algae hold the key? BMC Evol Biol 11(104). doi:10.1186/1471-2148-11-104

  • Wu GD, Chen J, Hoffman C, Bittinger K, Chen Y-Y, Keilbaugh SA, Bewtra M, Knbights D, Walters WA, Knight R, Sinha R, Gilroy E, Gupta K, Baldassano R, Nessel L, Hongzhe L, Bushman FD, Lewis JD (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yuan XL, Xao SH, Taylor TN (2005) Lichen-like symbiosis 600 million years ago. Science 308(s724):1017–1020

    CAS  PubMed  Google Scholar 

  • Zook D (1983) A study of the role of bacteria in lichens. MA thesis, Clark University, Worcester, MA, USA

    Google Scholar 

  • Zook D (2002) Prioritizing symbiosis to sustain biodiversity: are symbionts keystone species? In: Seckbach J (ed) Symbiosis: mechanisms and model systems. Kluwer, Dordrecht, pp 3–12

    Google Scholar 

  • Zook D (2010) Tropical rainforests as dynamic symbiospheres of life. Symbiosis 51(1):27–36

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Zook .

Editor information

Editors and Affiliations

Glossary

Arbuscular

Branching tree like hyphae of mycorrhizal fungi within, but not entirely enclosed, plant root cells

Actinobacteria

Filamentous bacteria commonly found in soils and featuring an array of antibiotic chemistry

Archaeans

Microscopic organisms that thrive in “extreme” temperature or saline conditions. They have many biochemical and genetic features that are closer to eukaryotes than prokaryotes

Ascomycete

Small craterlike features on the surface of fungi and lichens, from which spores are emitted

Bacteriocytes

Specialized intracellular regions of many insects that house symbiotic bacteria which are transmitted via the insect egg and often grouping during the life cycle to form functional organs known as bacteriomes

Bioaugmentation

Any intervention by humans that seeks to promote the viability and fitness of a holobiont (organism) living in non-anthropogenic nature

Chimera

In the context of a holobiont, it is a collection of different genomes interacting as one entity

Coccoliths

The plates of calcium carbonate (limestone) surrounding holobionts known as coccolithophores. These algae in the group haptophta build these structures as part of their outer covering

Endemic

A species that is characteristic of a biogeographical region over a significant period of geologic time

Extant

In the context of biology and evolution, organisms or conditions from more ancient geological time that have persisted to the present

Endophytes

Bacteria or fungi that live symbiotically in between or within plant cells

Epibiotic

An organism lives on the surface of another different organism. It may or may not be symbiotic

Facultative

An organism that functions with clear options such as being to live in either aerobic or anaerobic conditions

Gnotobiology

The study of organisms living in an artificially created environment, namely in conditions where no other living organisms are present

Heamatophagous

The ability of certain animals to penetrate body parts of other organisms and feed on blood

Hermatypic

Coral–dino holobionts that build exoskeletons known commonly as reefs, as opposed to many corals which do not extrude limestone and thus known as a hermatypic

Holobiont

Any living entity (all eukaryotes and rarely some prokaryotes) made of two or more different symbionts—minimally a so-called host species and different symbiont species

Horizontal transmission

The passing of a symbiont to following generations through one symbiont acquiring the other symbiont from the environment

Karst

Geological formations usually created by the dissolution of carbonate rocks such as limestone

Lithosphere

The outermost section of the solid earth, frequently referred to as “crust” but encompassing as well somewhat deeper layers, such as the upper region of the mantle. Much of the lithosphere can be considered part of the region where life can be found, known as the biosphere

Metagenomic

The collection of genomes from different organisms as collected directly from the natural environment as opposed to laboratory cultures

Microbiogenic

Geological structures and features which are the result of living microbial processes and depositions

Nucleomorph

A genetic fraction or remnant of a previously complete nucleus from an alga and now embedded in a new alga with its own nucleus

Pedosphere

The outermost layer of the solid earth composed of the soil and rock eroding regions

Peptidoglycan

A chemical compound made up of sugars and amino acids that forms a mesh-like cell layer known as the bacterial cell wall. It is the defining characteristic of eubacteria, for it is not found in the microbial domain, Archaea

Phagocytosis

The process whereby a cell, usually a eukaryotic one, or an organism envelopes and then internalizes materials or other organisms from the surrounding environs

Rhizosphere

The soil regions among the roots of plants, including the organisms and all their interactions

Rumen

The specialized first section of the alimentary canal of many hooved animals, wherein fermenting, cellulose-producing microbes are housed

Stromatolites

Lithified structures built by the trapping, binding, processing, and then deposition of sediment by cyanobacteria. They are prominent in the fossil record and serve as evidence that our oxygenated atmosphere was substantially the result of cyanobacterial metabolism

Syconium

The section of the Ficus (fig) tree that becomes a fruit, but initially is a completely enclosed structure with numerous internal flowers. Only its holobiont specific partners, certain fig wasps can gain entry and promote the necessary pollination

Symbiosome

A specialized membrane usually substantially formed by the “host” member of a holobiont which completely encloses the entering or captured symbiont

Syntrophy

One species lives off the products of another organism

Thallus

The living structure built by the algal–fungal lichen symbiosis. It bears little or no resemblance to the morphology of either the fungus or the alga. Some lichens have a cyanobacterial holobiont partner which also contributes to its development

Trophosome

A specialized symbiosis-created food-processing organ which houses sulfur oxidizing and other bacteria, in deep sea vent tube worms

Vertical transmission

The persistence from generation to generation of a symbiont(s) through direct transfer via the “host,” often through incorporation within or attachment to an egg

Viviparous

Animals which produce live young emerging from the body as opposed to the deposition externally of eggs

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zook, D. (2015). Symbiosis—Evolution’s Co-Author. In: Gontier, N. (eds) Reticulate Evolution. Interdisciplinary Evolution Research, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-16345-1_2

Download citation

Publish with us

Policies and ethics