Skip to main content

Structured Sparsity: Discrete and Convex Approaches

  • Chapter
Book cover Compressed Sensing and its Applications

Abstract

During the past decades, sparsity has been shown to be of significant importance in fields such as compression, signal sampling and analysis, machine learning, and optimization. In fact, most natural data can be sparsely represented, i.e., a small set of coefficients is sufficient to describe the data using an appropriate basis. Sparsity is also used to enhance interpretability in real-life applications, where the relevant information therein typically resides in a low dimensional space. However, the true underlying structure of many signal processing and machine learning problems is often more sophisticated than sparsity alone. In practice, what makes applications differ is the existence of sparsity patterns among coefficients. In order to better understand the impact of such structured sparsity patterns, in this chapter we review some realistic sparsity models and unify their convex and non-convex treatments. We start with the general group sparse model and then elaborate on two important special cases: the dispersive and hierarchical models. We also consider more general structures as defined by set functions and present their convex proxies. Further, we discuss efficient optimization solutions for structured sparsity problems and illustrate structured sparsity in action via three applications in image processing, neuronal signal processing, and confocal imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Other convex structured models that can be described as the composition of a simple function over a linear transformation D can be found in [1].

  2. 2.

    The proposed norm originates from the composite absolute penalties (CAP) convex norm, proposed in [133], according to which

    $$\displaystyle\begin{array}{rcl} g(x) =\sum _{G_{i}}\left (\sum _{j\in G_{i}}\vert x_{j}\vert ^{\gamma }\right )^{p},& & {}\end{array}$$
    (12.19)

    for various values of γ and p. Observe that this model also includes the famous group sparse model where \(g(x) =\sum _{G_{i}}\|x_{G_{i}}\|_{2}\), described in Section 12.3, for p = 1∕2 and γ = 2.

  3. 3.

    A regular quad-tree is a finite tree whose nodes have exactly four children, leaves excluded.

  4. 4.

    A monotone function is a function that satisfies: ∀S ⊆ T ⊆ N, R(S) ≤ R(T).

  5. 5.

    A symmetric function is a function that satisfies: \(\forall S \subseteq N,R(S) = R(N\setminus S)\).

  6. 6.

    Actually, it is a norm iff \(N = \cup _{d_{i}>0}\ G_{i}\).

  7. 7.

    Consider the following example: Let N = { 1, 2, 3, 4}, and \(\mathfrak{G} =\{ G_{1} =\{ 1\},G_{2} =\{ 2, 3\},G_{3} =\{ 1, 2, 4\}\}\), with weights defined as d i  = | G i  | . Then the inequality in Definition 7 is not satisfied for the sets S = { 1, 2} for which R sc (S) = 3, and U = { 1, 2, 4} for which R sc (U) = 4, with the addition of the element {3}.

  8. 8.

    We acknowledge that there are other criteria that can be considered in practice; for completeness, in the simple sparsity case, we refer the reader to the 1-norm constrained linear regression (a.k.a. Lasso [115])—similarly, there are alternative optimization approaches for the discrete case [127]. However, our intention in this chapter is to use the most prevalent formulations used in practice.

  9. 9.

    For example, 1-norm models well the 0-“norm.”

  10. 10.

    In the case of CS, an important modification of (12.39) to achieve linear computational time per iteration is the substitution of the gradient with the median operator, which is nonlinear and defined component-wise on a vector; for more information, we refer to [41, 47].

  11. 11.

    In [120], the authors consider a more general class of functions with no global Lipschitz constant L over their domain. The description of this material is out of the scope of this chapter and is left to the reader who is interested in deeper convex analysis and optimization.

References

  1. Argyriou, A., Micchelli, C., Pontil, M., Shen, L., Xu, Y.: Efficient first order methods for linear composite regularizers (2000). arXiv preprint arXiv:1104.1436

    Google Scholar 

  2. Bach, F.: Structured sparsity-inducing norms through submodular functions. In: Proceedings of Neural Information Processing Systems (NIPS) Foundation, pp. 118–126 (2010)

    Google Scholar 

  3. Bach, F.: Learning with submodular functions: a convex optimization perspective (2011). arXiv preprint arXiv:1111.6453

    Google Scholar 

  4. Bah, B., Baldassarre, L., Cevher, V.: Model-based sketching and recovery with expanders. In: Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA) (2014)

    Google Scholar 

  5. Baldassarre, L., Bhan, N., Cevher, V., Kyrillidis, A.: Group-sparse model selection: Hardness and relaxations (2013). arXiv preprint arXiv:1303.3207

    Google Scholar 

  6. Baraniuk, R.: Optimal tree approximation with wavelets. In: Proceedings of SPIE’s International Symposium on Optical Science, Engineering, and Instrumentation, pp. 196–207. International Society for Optics and Photonics (1999)

    Google Scholar 

  7. Baraniuk, R., DeVore, R., Kyriazis, G., Yu, X.: Near best tree approximation. Adv. Comput. Math. 16(4), 357–373 (2002)

    Article  MathSciNet  Google Scholar 

  8. Baraniuk, R., Cevher, V., Duarte, M., Hegde, C.: Model-based compressive sensing. IEEE Trans. Inf. Theory 56(4), 1982–2001 (2010)

    Article  MathSciNet  Google Scholar 

  9. Baraniuk, R., Cevher, V., Wakin, M.: Low-dimensional models for dimensionality reduction and signal recovery: a geometric perspective. Proc. IEEE 98(6), 959–971 (2010)

    Article  Google Scholar 

  10. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  Google Scholar 

  11. Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1), 1–127 (2009)

    Article  MathSciNet  Google Scholar 

  12. Bertsekas, D.: Projected Newton methods for optimization problems with simple constraints. SIAM J. Control Optim. 20(2), 221–246 (1982)

    Article  MathSciNet  Google Scholar 

  13. Bhan, N., Baldassarre, L., Cevher, V.: Tractability of interpretability via selection of group-sparse models. In: Proceedings of IEEE International Symposium on Information Theory (ISIT) (2013)

    Google Scholar 

  14. Blumensath, T., Davies, M.: Iterative hard thresholding for compressed sensing. Appl. Comput. Harmon. Anal. 27(3), 265–274 (2009)

    Article  MathSciNet  Google Scholar 

  15. Blumensath, T., Davies, M.: Sampling theorems for signals from the union of finite-dimensional linear subspaces. IEEE Trans. Inf. Theory 55(4), 1872–1882 (2009)

    Article  MathSciNet  Google Scholar 

  16. Bonnans, J.: Local analysis of Newton-type methods for variational inequalities and nonlinear programming. Appl. Math. Optim. 29, 161–186 (1994)

    Article  MathSciNet  Google Scholar 

  17. Born, M., Wolf, E.: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. 7th edn. Cambridge University Press, Cambridge, UK (1999)

    Book  Google Scholar 

  18. Borwein, J., Lewis, A.: Convex Analysis and Nonlinear Optimization: Theory and Examples. Springer-Verlag, New York, US (2006)

    Book  Google Scholar 

  19. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  Google Scholar 

  20. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge, UK (2004)

    Book  Google Scholar 

  21. Buchbinder, N., Feldman, M., Naor, J., Schwartz, R.: A tight linear time 1∕2-approximation for unconstrained submodular maximization. In: IEEE 53rd Annual Symposium on Foundations of Computer Science (FOCS), pp. 649–658 (2012)

    Google Scholar 

  22. Buchbinder, N., Feldman, M., Naor, J., Schwartz, R.: Submodular maximization with cardinality constraints. In: Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA) (2014)

    Google Scholar 

  23. Candes, E.: Compressive sampling. In: Proceedings of the International Congress of Mathematicians: Madrid, August 22–30, 2006: Invited Lectures, pp. 1433–1452 (2006)

    Google Scholar 

  24. Cartis, C., Thompson, A.: An exact tree projection algorithm for wavelets (2013). arXiv preprint arXiv:1304.4570

    Google Scholar 

  25. Cevher, V., Hegde, C., Duarte, M., Baraniuk, R.: Sparse signal recovery using Markov random fields. In: Proceedings of Neural Information Processing Systems (NIPS) Foundation (2009)

    Google Scholar 

  26. Chambolle, A., De Vore, R., Lee, N., Lucier, B.: Nonlinear wavelet image processing: Variational problems, compression, and noise removal through wavelet shrinkage. IEEE Trans. Image Process. 7(3), 319–335 (1998)

    Article  MathSciNet  Google Scholar 

  27. Chambolle, A., Pock, T.: A first-order primal–dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  Google Scholar 

  28. Chandrasekaran, V., Recht, B., Parrilo, P., Willsky, A.: The convex geometry of linear inverse problems. Found. Comput. Math. 12, 805–849 (2012)

    Article  MathSciNet  Google Scholar 

  29. Chen, S., Donoho, D., Saunders, M.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20(1), 33–61 (1998)

    Article  MathSciNet  Google Scholar 

  30. Combettes, P., Wajs, V.: Signal recovery by proximal forward–backward splitting. Multiscale Model. Simulat. 4(4), 1168–1200 (2005)

    Article  MathSciNet  Google Scholar 

  31. Crouse, M., Nowak, R., Baraniuk, R.: Wavelet-based statistical signal processing using hidden Markov models. IEEE Trans. Signal Process. 46(4), 886–902 (1998)

    Article  MathSciNet  Google Scholar 

  32. Dahl, J., Vandenberghe, L., Roychowdhury, V.: Covariance selection for nonchordal graphs via chordal embedding. Optim. Methods Softw. 23(4), 501–520 (2008)

    Article  MathSciNet  Google Scholar 

  33. Das, A., Dasgupta, A., Kumar, R.: Selecting diverse features via spectral regularization. In: Proceedings of Neural Information Processing Systems (NIPS) Foundation, pp. 1592–1600 (2012)

    Google Scholar 

  34. Das, A., Kempe, D.: Submodular meets spectral: Greedy algorithms for subset selection, sparse approximation and dictionary selection (2011). arXiv preprint arXiv:1102.3975

    Google Scholar 

  35. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004)

    Article  Google Scholar 

  36. Donoho, D.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  37. Dughmi, S.: Submodular functions: extensions, distributions, and algorithms: a survey (2009). arXiv preprint arXiv:0912.0322

    Google Scholar 

  38. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Ann. Stat. 32(2), 407–499 (2004)

    Article  MathSciNet  Google Scholar 

  39. El Halabi, M., Baldassarre, L., Cevher, V.: To convexify or not? Regression with clustering penalties on graphs. In: IEEE 5th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), pp. 21–24 (20130

    Google Scholar 

  40. Eldar, Y., Mishali, M.: Robust recovery of signals from a structured union of subspaces. IEEE Trans. Inf. Theory 55(11), 5302–5316 (2009)

    Article  MathSciNet  Google Scholar 

  41. Foucart, S.: Hard thresholding pursuit: an algorithm for compressive sensing. SIAM J. Numer. Anal. 49(6), 2543–2563 (2011)

    Article  MathSciNet  Google Scholar 

  42. Friedman, J., Hastie, T., Tibshirani, R.: A note on the group lasso and a sparse group lasso (2010). arXiv preprint arXiv:1001.0736

    Google Scholar 

  43. Fujishige, S., Isotani, S.: A submodular function minimization algorithm based on the minimum-norm base. Pac. J. Optim. 7(1), 3–17 (2011)

    MathSciNet  Google Scholar 

  44. Fujishige, S., Patkar, S.: Realization of set functions as cut functions of graphs and hypergraphs. Discret. Math. 226(1), 199–210 (2001)

    Article  MathSciNet  Google Scholar 

  45. Fukushima, M., Mine, H.: A generalized proximal point algorithm for certain non-convex minimization problems. Int. J. Syst. Sci. 12(8), 989–1000 (1981)

    Article  MathSciNet  Google Scholar 

  46. Gerstner, W., Kistler, W.: Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge University Press, Cambridge, UK (2002)

    Book  Google Scholar 

  47. Gilbert, A., Indyk, P.: Sparse recovery using sparse matrices. Proc. IEEE 98(6), 937–947 (2010)

    Article  Google Scholar 

  48. Girosi, F.: An equivalence between sparse approximation and support vector machines. Neural Comput. 10(6), 1455–1480 (1998)

    Article  Google Scholar 

  49. Goldberg, A., Rao, S.: Beyond the flow decomposition barrier. J. ACM 45(5), 783–797 (1998)

    Article  MathSciNet  Google Scholar 

  50. Goldstein, T., Donoghue, B., Setzer, S.: Fast Alternating Direction Optimization Methods. CAM Report, pp. 12–35 (2012)

    Google Scholar 

  51. Goy, A., Psaltis, D.: Digital confocal microscope. Opt. Exp. 20(20), 22720 (2012)

    Article  Google Scholar 

  52. Gramfort, A., Kowalski, M.: Improving M/EEG source localization with an inter-condition sparse prior. In: Proceedings of IEEE International Symposium on Biomedical Imaging (2009)

    Google Scholar 

  53. Guigue, V., Rakotomamonjy, A., Canu, S.: Kernel basis pursuit. In: Machine Learning, pp. 146–157. Springer-Verlag, Berlin, Heidelberg (2005)

    Google Scholar 

  54. He, B., Yuan, X.: On the O(1∕n) convergence rate of the Douglas–Rachford alternating direction method. SIAM J. Numer. Anal. 50, 700–709 (2012)

    Article  MathSciNet  Google Scholar 

  55. He, L., Carin, L.: Exploiting structure in wavelet-based Bayesian compressive sensing. IEEE Trans. Signal Process. 57(9), 3488–3497 (2009)

    Article  MathSciNet  Google Scholar 

  56. Heckerman, D., Geiger, D., Chickering, D.: Learning Bayesian networks: the combination of knowledge and statistical data. Mach. Learn. 20(3), 197–243 (1995)

    Google Scholar 

  57. Hegde, C., Duarte, M., Cevher, V.: Compressive sensing recovery of spike trains using a structured sparsity model. In: Signal Processing with Adaptive Sparse Structured Representations (SPARS) (2009)

    Google Scholar 

  58. Hsieh, C., Sustik, M., Dhillon, I., Ravikumar, P.: Sparse inverse covariance matrix estimation using quadratic approximation. In: Proceedings of Neural Information Processing Systems (NIPS) Foundation, pp. 2330–2338 (2011)

    Google Scholar 

  59. Hsieh, C., Sustik, M., Dhillon, I., Ravikumar, P., Poldrack, R.: BIG & QUIC: Sparse inverse covariance estimation for a million variables. In: Proceedings of Neural Information Processing Systems (NIPS) Foundation, pp. 3165–3173 (2013)

    Google Scholar 

  60. Huang, J., Zhang, T.: The benefit of group sparsity. Ann. Stat. 38(4), 1978–2004 (2010)

    Article  Google Scholar 

  61. Huang, J., Zhang, T., Metaxas, D.: Learning with structured sparsity. J. Mach. Learn. Res. 12, 3371–3412 (2011)

    MathSciNet  Google Scholar 

  62. Indyk, P., Razenshteyn, I.: On model-based RIP-1 matrices. In: Automata, Languages, and Programming, pp. 564–575. Springer-Verlag, Berlin, Heidelberg (2013)

    Google Scholar 

  63. International Neuroinformatics Coordinating Faculty.: Spike time prediction – challenge C (2009)

    Google Scholar 

  64. Jacob, L., Obozinski, G., Vert, J.P.: Group lasso with overlap and graph lasso. In: Proceedings of The 30th International Conference on Machine Learning (ICML) (2009)

    Google Scholar 

  65. Jalali, A., Ravikumar, P., Vasuki, V., Sanghavi, S.: On learning discrete graphical models using group-sparse regularization. In: Proceedings of International Conference on Artificial Intelligence and Statistics, pp. 378–387 (2011)

    Google Scholar 

  66. Jegelka, S., Lin, H., Bilmes, J.: On fast approximate submodular minimization. In: Proceedings of Neural Information Processing Systems (NIPS) Foundation, pp. 460–468 (2011)

    Google Scholar 

  67. Jenatton, R., Audibert, J.-Y., Bach, F.: Structured variable selection with sparsity-inducing norms. J. Mach. Learn. Res. 12, 2777–2824 (2011)

    MathSciNet  Google Scholar 

  68. Jenatton, R., Gramfort, A., Michel, V., Obozinski, G., Bach, F., Thirion, B.: Multi-scale mining of fMRI data with hierarchical structured sparsity. In: Pattern Recognition in NeuroImaging (PRNI) (2011)

    Google Scholar 

  69. Jenatton, R., Mairal, J., Obozinski, G., Bach, F.: Proximal methods for hierarchical sparse coding. J. Mach. Learn. Res. 12, 2297–2334 (2011)

    MathSciNet  Google Scholar 

  70. Johnstone, I.: On the distribution of the largest eigenvalue in principal components analysis. Ann. Stat. 29(2), 295–327 (2001)

    Article  MathSciNet  Google Scholar 

  71. Kim, S., Xing, E.: Tree-guided group lasso for multi-task regression with structured sparsity. In: Proceedings of The 30th International Conference on Machine Learning (ICML), pp. 543–550 (2010)

    Google Scholar 

  72. Kolmogorov, V., Zabin, R.: What energy functions can be minimized via graph cuts? IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 147–159 (2004)

    Article  Google Scholar 

  73. Krause, A., Cevher, V.: Submodular dictionary selection for sparse representation. In: Proceedings of The 30th International Conference on Machine Learning (ICML), pp. 567–574 (2010)

    Google Scholar 

  74. Kyrillidis, A., Cevher, V.: Recipes on hard thresholding methods. In: Proceedings of 4th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP) (2011)

    Google Scholar 

  75. Kyrillidis, A., Cevher, V.: Combinatorial selection and least absolute shrinkage via the clash algorithm. In: Proceedings of International Symposium on Information Theory Proceedings (ISIT), pp. 2216–2220 (2012)

    Google Scholar 

  76. Kyrillidis, A., Cevher, V.: Fast proximal algorithms for self-concordant function minimization with application to sparse graph selection. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6585–6589 (2013)

    Google Scholar 

  77. Kyrillidis, A., Puy, G., Cevher, V.: Hard thresholding with norm constraints. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3645–3648 (2012)

    Google Scholar 

  78. Lee, J., Hastie, T.: Structure learning of mixed graphical models. In: Proceedings of the Sixteenth International Conference on Artificial Intelligence and Statistics, pp. 388–396 (2013)

    Google Scholar 

  79. Loh, P., Wainwright, M.: Structure estimation for discrete graphical models: generalized covariance matrices and their inverses. Ann. Stat. 41(6), 3022–3049 (2013)

    Article  MathSciNet  Google Scholar 

  80. Lovász, L.: Submodular functions and convexity. In: Mathematical Programming The State of the Art, pp. 235–257. Springer-Verlag, Berlin, Heidelberg (1983)

    Google Scholar 

  81. Lustig, M., Donoho, D., Pauly, J.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007)

    Article  Google Scholar 

  82. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, Burlington, MA, US (1999)

    Google Scholar 

  83. Mallat, S., Zhang, Z.: Matching pursuits with time–frequency dictionaries. IEEE Trans. Signal Process. 41(12), 3397–3415 (1993)

    Article  Google Scholar 

  84. Martins, A., Smith, N., Aguiar, P., Figueiredo, M.: Structured sparsity in structured prediction. In: proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 1500–1511 (2011)

    Google Scholar 

  85. McCoy, B., Wu, T.: The Two-Dimensional Ising Model. Harvard University Press, Cambridge, MA, US (1973)

    Book  Google Scholar 

  86. Meier, L., Van De Geer, S., Bühlmann, P.: The group lasso for logistic regression. J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 70(1), 53–71 (2008)

    Google Scholar 

  87. Minsky, M.: Microscopy Apparatus. US Patent 3,013,467 (1961)

    Google Scholar 

  88. Mosci, S., Villa, S., Verri, A., Rosasco, L.: A primal–dual algorithm for group 1 regularization with overlapping groups. In: Proceedings of Neural Information Processing Systems (NIPS) Foundation (2010)

    Google Scholar 

  89. Narasimhan, M., Jojic, N., Bilmes, J.: Q-Clustering. In: Proceedings of Neural Information Processing Systems (NIPS) Foundation (2005)

    Google Scholar 

  90. Natarajan, B.: Sparse approximate solutions to linear systems. SIAM J. Comput. 24(2), 227–234 (1995)

    Article  MathSciNet  Google Scholar 

  91. Needell, D., Tropp, J.: COSAMP: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26(3), 301–321 (2009)

    Article  MathSciNet  Google Scholar 

  92. Nemhauser, G., Wolsey, L.: Integer and Combinatorial Optimization, vol. 18. Wiley, New York (1988)

    Google Scholar 

  93. Nemhauser, G., Wolsey, L., Fisher, M.: An analysis of approximations for maximizing submodular set functions. Math. Program. 14(1), 265–294 (1978)

    Article  MathSciNet  Google Scholar 

  94. Nemirovskii, A.: Proximal-method with rate of convergence \(\mathcal{O}(1/t)\) for variational inequalities with Lipschitz continuous monotone operators and smooth convex–concave saddle point problems. SIAM J. Optim. 15(1), 229–251 (2004)

    Article  MathSciNet  Google Scholar 

  95. Nesterov, Y.: A method of solving a convex programming problem with convergence rate O(1∕k 2). Sov. Math. Dokl. 27, 372–376 (1983)

    Google Scholar 

  96. Nesterov, Y.: Excessive gap technique in nonsmooth convex minimization. SIAM J. Optim. 16(1), 235–249 (2005)

    Article  MathSciNet  Google Scholar 

  97. Nesterov, Y.: Smooth minimization of nonsmooth functions. Math. Program. 103(1), 127–152 (2005)

    Article  MathSciNet  Google Scholar 

  98. Nesterov, Y.: Primal–dual subgradient methods for convex problems. Math. Program. 120(1, Ser. B), 221–259 (2009)

    Google Scholar 

  99. Obozinski, G., Bach, F.: Convex relaxation for combinatorial penalties (2012). arXiv preprint arXiv:1205.1240

    Google Scholar 

  100. Obozinski, G., Jacob, L., Vert, J.: Group lasso with overlaps: The latent group lasso approach (2011). arXiv preprint arXiv:1110.0413

    Google Scholar 

  101. Orlin, J.: A faster strongly polynomial time algorithm for submodular function minimization. Math. Program. 118(2), 237–251 (2009)

    Article  MathSciNet  Google Scholar 

  102. Puig, A., Wiesel, A., Zaas, A., Woods, C., Ginsburg, G., Fleury, G., Hero, A.: Order-preserving factor analysis—application to longitudinal gene expression. IEEE Trans. Signal Process. 59, 4447–4458 (2011)

    Article  MathSciNet  Google Scholar 

  103. Rao, N., Nowak, R., Wright, S., Kingsbury, N.: Convex approaches to model wavelet sparsity patterns. In: Proceedings of 18th IEEE International Conference on Image Processing (ICIP), pp. 1917–1920 (2011)

    Google Scholar 

  104. Rao, N., Recht, B., Nowak, R.: Signal recovery in unions of subspaces with applications to compressive imaging (2012). arXiv preprint arXiv:1209.3079

    Google Scholar 

  105. Rapaport, F., Barillot, E., Vert, J.: Classification of arrayCGH data using fused SVM. Bioinformatics 24(13), 375–i382 (2008)

    Article  Google Scholar 

  106. Rebafka, T., Lvy-Leduc, C., Charbit, M.: OMP-type algorithm with structured sparsity patterns for multipath radar signals (2011). arXiv preprint arXiv:1103.5158

    Google Scholar 

  107. Robinson, S.: Strongly regular generalized equations. Math. Oper. Res. 5, 43–62 (1980)

    Article  MathSciNet  Google Scholar 

  108. Schmidt, M., Roux, N.L., Bach, F.: Convergence rates of inexact proximal-gradient methods for convex optimization. In: Proceedings of Neural Information Processing Systems (NIPS) Foundation (2011)

    Google Scholar 

  109. Seeger, M.: On the Submodularity of Linear Experimental Design. Technical Report (2009)

    Google Scholar 

  110. Shapiro, J.: Embedded image coding using zero trees of wavelet coefficients. IEEE Trans. Signal Process. 41(12), 3445–3462 (1993)

    Article  Google Scholar 

  111. Sheppard, C., Shotton, D.: Confocal Laser Scanning Microscopy. BIOS Scientific Publishers, Garland Science, New York, US (1997)

    Google Scholar 

  112. Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: A sparse-group lasso. J. Comput. Graph. Stat. 22(2), 231–245 (2013)

    Article  MathSciNet  Google Scholar 

  113. Stojnic, M., Parvaresh, F., Hassibi, B.: On the reconstruction of block-sparse signals with an optimal number of measurements. IEEE Trans. Signal Process. 57(8) 3075–3085 (2009)

    Article  MathSciNet  Google Scholar 

  114. Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102(43), 15545–15550 (2005)

    Article  Google Scholar 

  115. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 28(1), 267–288 (1996)

    Google Scholar 

  116. Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., Knight, K.: Sparsity and smoothness via the fused lasso. J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 67(1), 91–108 (2005)

    Google Scholar 

  117. Tran-Dinh, Q., Cevher, V.: An Optimal Primal–Dual Decomposition Framework. Technical Report, LIONS – EPFL (2014)

    Google Scholar 

  118. Tran-Dinh, Q., Cevher, V.: A Unified Optimal Primal–Dual Framework for Constrained Convex Minimization. Technical Report, LIONS, pp. 1–32 (2014)

    Google Scholar 

  119. Tran-Dinh, Q., Cevher, V.: Constrained convex minimization via model-based excessive gap. In: Proceedings of the Neural Information Processing Systems Foundation Conference (NIPS) (2014)

    Google Scholar 

  120. Tran Dinh, Q., Kyrillidis, A., Cevher, V.: Composite self-concordant minimization (2013). arXiv preprint arXiv:1308.2867

    Google Scholar 

  121. Tran Dinh, Q., Kyrillidis, A., Cevher, V.: A proximal Newton framework for composite minimization: graph learning without Cholesky decompositions and matrix inversions. In: Proceedings of The 30th International Conference on Machine Learning (ICML), pp. 271–279 (2013)

    Google Scholar 

  122. Tropp, J., Gilbert, A.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)

    Article  MathSciNet  Google Scholar 

  123. Tseng, P.: Applications of splitting algorithm to decomposition in convex programming and variational inequalities. SIAM J. Optim. 29, 119–138 (1991)

    Article  Google Scholar 

  124. Villa, S., Rosasco, L., Mosci, S., Verri, A.: Proximal methods for the latent group lasso penalty. Comput. Optim. Appl. 58(2), 1–27 (2012)

    MathSciNet  Google Scholar 

  125. Villa, S., Salzo, S., Baldassarre, L., Verri, A.: Accelerated and inexact forward–backward algorithms. SIAM J. Optim. 23(3), 1607–1633 (2013)

    Article  MathSciNet  Google Scholar 

  126. Vincent, M., Hansen, N.: Sparse group lasso and high dimensional multinomial classification. Comput. Stat. Data Anal. 71, 771–786 (2014)

    Article  MathSciNet  Google Scholar 

  127. Wright, S., Nowak, R., Figueiredo, M.: Sparse reconstruction by separable approximation. IEEE Trans. Signal Process. 57(7), 2479–2493 (2009)

    Article  MathSciNet  Google Scholar 

  128. Wright, S., Nocedal, J.: Numerical Optimization. Springer, New York (1999)

    Google Scholar 

  129. Yuan, L., Liu, J., Ye, J.: Efficient methods for overlapping group lasso. In: Proceedings of Neural Information Processing Systems (NIPS) Foundation, pp. 352–360 (2011)

    Google Scholar 

  130. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 68(1), 49–67 (2006)

    Google Scholar 

  131. Zeng, X., Figueiredo, M.: A novel sparsity and clustering regularization (2013). arXiv preprint arXiv:1310.4945

    Google Scholar 

  132. Zhang, Z., Shi, Y., Yin, B.: MR images reconstruction based on TV-group sparse model. In: Proceedings of IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6 (2013)

    Google Scholar 

  133. Zhao, P., Rocha, G., Yu, B.: The composite absolute penalties family for grouped and hierarchical variable selection. Ann. Stat. 37(6A), 3468–3497 (2009)

    Article  MathSciNet  Google Scholar 

  134. Zhou, H., Sehl, M.E., Sinsheimer, J.S., Lange, K.: Association screening of common and rare genetic variants by penalized regression. Bioinformatics 26(19), 2375 (2010)

    Article  Google Scholar 

  135. Zhou, Y., Jin, R., Hoi, S.: Exclusive lasso for multi-task feature selection. In: Proceedings of International Conference on Artificial Intelligence and Statistics, pp. 988–995 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Baldassarre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kyrillidis, A., Baldassarre, L., Halabi, M.E., Tran-Dinh, Q., Cevher, V. (2015). Structured Sparsity: Discrete and Convex Approaches. In: Boche, H., Calderbank, R., Kutyniok, G., Vybíral, J. (eds) Compressed Sensing and its Applications. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-16042-9_12

Download citation

Publish with us

Policies and ethics