Skip to main content

On the Synchronizing Probability Function and the Triple Rendezvous Time

New Approaches to Černý’s Conjecture

  • Conference paper
  • First Online:
Language and Automata Theory and Applications (LATA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8977))

Abstract

We push further a recently proposed approach for studying synchronizing automata and Černý’s conjecture, namely, the synchronizing probability function. In this approach, the synchronizing phenomenon is reinterpreted as a Two-Player game, in which the optimal strategies of the players can be obtained through a Linear Program. Our analysis mainly focuses on the concept of triple rendezvous time, the length of the shortest word mapping three states onto a single one. It represents an intermediate step in the synchronizing process, and is a good proxy of its overall length. Our contribution is twofold. First, using the synchronizing probability function and properties of linear programming, we provide a new upper bound on the triple rendezvous time. Second, we disprove a conjecture on the synchronizing probability function by exhibiting a family of counterexamples. We discuss the game theoretic approach and possible further work in the light of our results.

This is a short conference version. For a long version with more details and examples see [12].

R.M. Jungers is a F.R.S.-FNRS Research Associate.

This work was also supported by the communauté francaise de Belgique - Actions de Recherche Concertées and by the Belgian Program on Interuniversity Attraction Poles initiated by the Belgian Federal Science Policy Office.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ananichev, D., Gusev, V., Volkov, M.: Slowly synchronizing automata and digraphs. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 55–65. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Ananichev, D.S., Volkov, M.V.: Synchronizing generalized monotonic automata. Theoretical Computer Science 330(1), 3–13 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Béal, M.P., Berlinkov, M.V., Perrin, D.: A quadratic upper bound on the size of a synchronizing word in one-cluster automata. International Journal of Foundations of Computer Science 22(2), 277–288 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Berlinkov, M.V.: On a conjecture by Carpi and D’Alessandro. In: Gao, Y., Lu, H., Seki, S., Yu, S. (eds.) DLT 2010. LNCS, vol. 6224, pp. 66–75. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Boyd, S., Vandenberghe, L.: Convex optimization. Cambridge University Press, New York (2004)

    Google Scholar 

  6. Carpi, A., D’Alessandro, F.: Independent sets of words and the synchronization problem. Advances in Applied Mathematics 50(3), 339–355 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. Černý, J.: Poznámka k homogénnym eksperimentom s konečnými automatami. Matematicko-fysikalny Casopis SAV 14, 208–216 (1964)

    MATH  Google Scholar 

  8. Černý, J., Pirická, A., Rosenauerova, B.: On directable automata. Kybernetica 7, 289–298 (1971)

    MATH  Google Scholar 

  9. Dubuc, L.: Sur les automates circulaires et la conjecture de Černý. RAIRO Informatique Theorique et Appliquée 32, 21–34 (1998)

    MathSciNet  Google Scholar 

  10. Eppstein, D.: Reset sequences for monotonic automata. SIAM Journal on Computing 19(3), 500–510 (1990). http://www.citeseer.ist.psu.edu/eppstein90reset.html

    Article  MATH  MathSciNet  Google Scholar 

  11. Frankl, P.: An extremal problem for two families of sets. European Journal on Combinatorics 3, 125–127 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gonze, F., Jungers, R.M.: On the synchronizing probability function and the triple rendezvous time for synchronizing automata (2014) ArXiv preprint. http://arxiv.org/abs/1410.4034

  13. Jungers, R.M.: The synchronizing probability function of an automaton. SIAM Journal on Discrete Mathematics 26(1), 177–192 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kari, J.: A counter example to a conjecture concerning synchronizing words in finite automata. EATCS Bulletin 73, 146 (2001)

    MATH  MathSciNet  Google Scholar 

  15. Kari, J.: Synchronizing finite automata on eulerian digraphs. Theoretical Computer Science 295, 223–232 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Pin, J.E.: On two combinatorial problems arising from automata theory. Annals of Discrete Mathematics 17, 535–548 (1983)

    MATH  Google Scholar 

  17. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Google Scholar 

  18. Roman, A.: A note on Černý conjecture for automata over 3-letter alphabet. Journal of Automata, Languages and Combinatorics 13(2), 141–143 (2008)

    MATH  MathSciNet  Google Scholar 

  19. Roman, A.: Genetic algorithm for synchronization. In: Dediu, A.H., Ionescu, A.M., Martín-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 684–695. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  20. Steinberg, B.: The averaging trick and the Černý conjecture. In: Gao, Y., Lu, H., Seki, S., Yu, S. (eds.) DLT 2010. LNCS, vol. 6224, pp. 423–431. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  21. Trahtman, A.N.: An efficient algorithm finds noticeable trends and examples concerning the Černy conjecture. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 789–800. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. Trahtman, A.N.: The Černý conjecture for aperiodic automata. Discrete mathematics and Theoretical Computer Science 9(2), 3–10 (2007)

    MATH  MathSciNet  Google Scholar 

  23. Trahtman, A.N.: Modifying the upper bound on the length of minimal synchronizing word. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914, pp. 173–180. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  24. Blondel, V., Jungers, R.M., Olshevsky, A.: On primitivity of sets of matrices (2014) ArXiv preprint. http://arxiv.org/abs/1306.0729

  25. Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Gonze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Gonze, F., Jungers, R.M. (2015). On the Synchronizing Probability Function and the Triple Rendezvous Time. In: Dediu, AH., Formenti, E., Martín-Vide, C., Truthe, B. (eds) Language and Automata Theory and Applications. LATA 2015. Lecture Notes in Computer Science(), vol 8977. Springer, Cham. https://doi.org/10.1007/978-3-319-15579-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15579-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15578-4

  • Online ISBN: 978-3-319-15579-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics