Skip to main content

Mobility Models for Vehicular Communications

  • Chapter
Vehicular ad hoc Networks

Abstract

The experimental evaluation of vehicular ad hoc networks (VANETs) implies elevate economic cost and organizational complexity, especially in presence of solutions that target large-scale deployments. As performance evaluation is however mandatory prior to the actual implementation of VANETs, simulation has established as the de-facto standard for the analysis of dedicated network protocols and architectures. The vehicular environment makes network simulation particularly challenging, as it requires the faithful modelling not only of the network stack, but also of all phenomena linked to road traffic dynamics and radio-frequency signal propagation in highly mobile environments. In this chapter, we will focus on the first aspect, and discuss the representation of mobility in VANET simulations. Specifically, we will present the requirements of a dependable simulation, and introduce models of the road infrastructure, of the driver’s behaviour, and of the traffic dynamics. We will also outline the evolution of simulation tools implementing such models, and provide a hands-on example of reliable vehicular mobility modelling for VANET simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.dol.gov/dol/topic/.

  2. 2.

    http://www.matsim.org/.

  3. 3.

    http://mctrans.ce.ufl.edu/featured/tsis/.

  4. 4.

    http://www.paramics-online.com/.

  5. 5.

    http://www.ptvamerica.com/vissim.html.

  6. 6.

    http://sourceforge.net/apps/mediawiki/sumo/index.php?title=TAPASCologne.

  7. 7.

    http://www.openstreetmap.org.

  8. 8.

    http://wiki.openstreetmap.org/wiki/Osmosis.

  9. 9.

    http://josm.openstreetmap.de.

  10. 10.

    http://sumo.sourceforge.net.

  11. 11.

    http://www.autobahn.nrw.de.

References

  1. Bai F, Sadagopan N, Helmy A (2003) The IMPORTANT framework for analyzing the impact of mobility on performance of routing protocols for adhoc networks. Elsevier Ad Hoc Netw1:383–403

    Article  Google Scholar 

  2. Baumann R, Legendre F, Sommer P (2008) Generic mobility simulation framework (GMSF). In: ACM mobility models

    Google Scholar 

  3. Bononi L, Di Felice M, D’Angelo G, Bracuto M, Donatiello L (2008) MoVES: A framework for parallel and distributed simulation of wireless vehicular ad hoc networks. Comput Netw 52(1):155–179

    Google Scholar 

  4. Cabspotting Project (2006) San Francisco exploratorium’s invisible dynamics initiative. http://cabspotting.org/index.html

  5. Camp T, Boleng J, Davies V (2002) A survey of mobility models for ad hoc network research. Wirel Commun Mobile Comput 2(5):483–502. Special issue on Mobile Ad Hoc Networking: Research, Trends and Applications

    Google Scholar 

  6. Cavin D, Sasson Y, Schiper A (2002) On the accuracy of MANET simulators. In: Proceedings of the second ACM international workshop on principles of mobile computing. ACM, New York, pp 38–43

    Google Scholar 

  7. Choffnes D, Bustamante F (2005) An integrated mobility and traffic model for vehicular wireless networks. In: ACM VANET

    Book  Google Scholar 

  8. Davies V (2000) Evaluating mobility models within an ad hoc network. Master’s thesis, Colorado School of Mines, Boulder, Etats-Unis

    Google Scholar 

  9. Ehling M, Bihler W (1996) Zeit im Blickfeld. Ergebnisse einer repräsentativen Zeitbudgeterhebung. In: Blanke K, Ehling M, Schwarz N (eds) Schriftenreihe des Bundesministeriums für Familie, Senioren, Frauen und Jugend, vol 121. W. Kohlhammer, Stuttgart, pp 237–274

    Google Scholar 

  10. ETH Laboratory for Software Technology (2009) K. Nagel. http://www.lst.inf.ethz.ch/research/ad-hoc/car-traces/

  11. Fiore M, Härri J (2008) The networking shape of vehicular mobility. In: ACM MobiHoc, Hong Kong, China

    Google Scholar 

  12. Fiore M, Haerri J, Filali F, Bonnet C (2007) Vehicular mobility simulation for VANETS. In: Proceedings of the 40th annual simulation symposium (ANSS 2007), Norfolk, VA

    Google Scholar 

  13. Fleetnet Project - Internet on the Road (2000) NEC Laboratories Europe. http://www.neclab.eu/Projects/fleetnet.htm

  14. Gawron C (1998) An iterative algorithm to determine the dynamic user equilibrium in a traffic simulation model. Int J Mod Phys C 9(3):393–407

    Article  Google Scholar 

  15. Haerri J, Filali F, Bonnet C (2009) Mobility models for vehicular ad hoc networks: a survey and taxonomy. IEEE Commun Surv Tutorials 11(4):19–41. doi:10.1109/SURV.2009.090403. http://dx.doi.org/10.1109/SURV.2009.090403

  16. Härri J, Fiore M, Filali F, Bonnet C (2011) Vehicular mobility simulation with VanetMobiSim. Simulation 87(4):275–300. doi:10.1177/0037549709345997. http://dx.doi.org/10.1177/0037549709345997

  17. Hertkorn G, Wagner P (2004) The application of microscopic activity based travel demand modelling in large scale simulations. In: World conference on transport research

    Google Scholar 

  18. Huang E, Hu W, Crowcroft J, Wassell I (2005) Towards commercial mobile ad hoc network applications: a radio dispatch system. In: Sixth ACM international symposium on mobile ad hoc networking and computing (MobiHoc 2005), Urbana-Champaign, IL

    Google Scholar 

  19. Jaap S, Bechler M, Wolf L (2005) Evaluation of routing protocols for vehicular ad hoc networks in city traffic scenarios. In: ITST

    Google Scholar 

  20. Jardosh A, Belding-Royer E, Almeroth K, Suri S (2003) Towards realistic mobility models for mobile ad hoc networks. In: ACM/IEEE international conference on mobile computing and networking (MobiCom 2003), San Diego, CA

    Google Scholar 

  21. Kim J, Sridhara V, Bohacek S (2009) Realistic mobility simulation of urban mesh networks. Ad Hoc Netw 7(2):411–430

    Article  Google Scholar 

  22. Krajzewicz D (2009) Kombination von taktischen und strategischen Einflüssen in einer mikroskopischen Verkehrsflusssimulation. In: Jürgensohn T, Kolrep H (eds) Fahrermodellierung in Wissenschaft und Wirtschaft. VDI-Verlag, Düsseldorf, pp 104–115

    Google Scholar 

  23. Krajzewicz D, Blokpoel RJ, Cartolano F, Cataldi P, Gonzalez A, Lazaro O, Leguay J, Lin L, Maneros J, Rondinone M (2010) iTETRIS - a system for the evaluation of cooperative traffic management solutions. In: Advanced microsystems for automotive applications 2010, VDI-Buch. Springer, Berlin, pp 399–410

    Google Scholar 

  24. Krajzewicz D, Erdmann J, Behrisch M, Bieker L (2012) Recent development and applications of SUMO—simulation of urban mobility. Int J Adv Syst Measur 5(3/4):128–138

    Google Scholar 

  25. Krauss S (1998) Microscopic modeling of traffic flow: investigation of collision free vehicle dynamics. Ph.D. thesis, Universität zu Köln

    Google Scholar 

  26. Krauss S, Wagner P, Gawron C (1997) Metastable states in a microscopic model of traffic flow. Phys Rev E 55(304):55–97

    Google Scholar 

  27. Legendre F, Borrel V, Dias de Amorim M, Fdida S (2006) Reconsidering microscopic mobility modeling for self-organizing networks. Network IEEE 20(6):4–12. doi:10.1109/MNET.2006.273114

    Article  Google Scholar 

  28. Mangharam R, Weller D, Rajkumar R, Mudalige P (2006) GrooveNet: a hybrid simulator for vehicle-to-vehicle networks. In: IEEE Mobiquitous

    Google Scholar 

  29. Martinez FJ, Cano JC, Calafate CT, Manzoni P (2008) Citymob: a mobility model pattern generator for VANETs. In: IEEE vehicular networks and applications workshop (Vehi-Mobi, held with ICC), Beijing

    Google Scholar 

  30. Miller J, Horowitz E (2007) FreeSim: a free real-time freeway traffic simulator. In: IEEE ITSC

    Google Scholar 

  31. Nagel K, Schreckenberg M (1992) A cellular automaton model for freeway traffic. J Phys I 2(12):2221–2229

    Google Scholar 

  32. Nagel K, Wolf D, Wagner P, Simon P (1998) Two-lane traffic rules for cellular automata: a systematic approach. Phys Rev E 58:1425–1437

    Article  Google Scholar 

  33. NOW - Network on Wheels Project (2008) Hartenstein H, Härri J, Torrent-Moreno M. https://dsn.tm.kit.edu/english/projects_now-project.php

  34. Piorkowski M, Raya M, Lugo A, Papadimitratos P, Grossglauser M, Hubaux JP (2008) TraNS: realistic joint traffic and network simulator for VANETs. ACM Mobile Comput Commun Rev 12(1):31–33

    Article  Google Scholar 

  35. Rindsfüser G, Ansorge J, Mühlhans H (2002) Aktivitätenvorhaben. In: Beckmann K (ed) SimVV Mobilität verstehen und lenken—zu einer integrierten quantitativen Gesamtsicht und Mikrosimulation von Verkehr, Ministry of School, Science and Research of Nordrhein-Westfalen

    Google Scholar 

  36. Saha A, Johnson D (2004) Modeling mobility for vehicular ad hoc networks. In: ACM VANET

    Book  Google Scholar 

  37. Seskar I, Maric S, Holtzman J, Wasserman J (1992) Rate of location area updates in cellular systems. In: IEEE 42nd vehicular technology conference, 1992, vol 2, pp 694–697. doi:10.1109/VETEC.1992.245478

  38. Sommer C, German R, Dressler F (2011) Bidirectionally coupled network and road traffic simulation for improved ivc analysis. IEEE Trans Mobile Comput 10(1):3–15

    Article  Google Scholar 

  39. Tian J, Haehner J, Becker C, Stepanov I, Rothermel K (2002) Graph-based mobility model for mobile ad hoc network simulation. In: SCS ANSS, San Diego

    Google Scholar 

  40. Treiber M, Helbing D (2002) Realistische mikrosimulation von strassenverkehr mit einem einfachen modell. In: ASIM, Rostock, Allemagne

    Google Scholar 

  41. Treiber M, Hennecke A, Helbing D (2000) Congested traffic states in empirical observations and microscopic simulations. Phys Rev E 62(2):1805–1824

    Article  Google Scholar 

  42. UDel Models for Simulation of Urban Mobile Wireless Networks (2009) Stephan Bohacek. http://www.udelmodels.eecis.udel.edu

  43. UMass DieselNet Project (2009) UMass diverse outdoor mobile environment (DOME). https://dome.cs.umass.edu/umassdieselnet

  44. Uppoor S, Trullols-Cruces O, Fiore M, Barcelo-Ordinas JM (2015) Generation and analysis of a large-scale urban vehicular mobility dataset. IEEE Trans Mobile Comput 1:1. PrePrints. doi:10.1109/TMC.2013.27

  45. Varschen C, Wagner P (2006) Mikroskopische Modellierung der Personenverkehrsnachfrage auf Basis von Zeitverwendungstagebuchern. Stadt Region Land 81:63–69

    Google Scholar 

  46. Yoon J, Liu M, Noble B (2003) Random waypoint considered harmful. In: Proceedings of IEEE INFOCOMM 2003, San Francisco, CA

    Google Scholar 

  47. Zheng Q, Hong X, Liu J (2006) An agenda-based mobility model. In: 39th IEEE annual simulation symposium (ANSS-39-2006), Huntsville, AL

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Manzoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Manzoni, P., Fiore, M., Uppoor, S., Domínguez, F.J.M., Calafate, C.T., Escriba, J.C.C. (2015). Mobility Models for Vehicular Communications. In: Campolo, C., Molinaro, A., Scopigno, R. (eds) Vehicular ad hoc Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-15497-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15497-8_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15496-1

  • Online ISBN: 978-3-319-15497-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics