Skip to main content

Olivine-Based Cathode Materials

  • Chapter
  • First Online:
Rechargeable Batteries

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

This chapter report the physicochemical and electrochemical properties of positive electrode materials with the olivine-like structure LiMPO4 (M=Fe, Mn, Ni, Co) for high power lithium-ion batteries. One approach to provide insight into the structural and electronic properties of optimized electrode materials involves a systematic study by a combination of techniques including structural, magnetic and spectroscopic measurements. We expose successively the principle of the inductive effect in polyanionic frameworks, the synthesis route, the structure and morphology of olivine nano-particles and their electrochemical features in various situations including high temperature, high current density, and in humid atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Padhi K, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194

    Article  Google Scholar 

  2. Padhi K, Nanjundaswamy KS, Masquelier C, Okada S, Goodenough JB (1997) Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J Electrochem Soc 144:1609–1613

    Article  Google Scholar 

  3. Huang H, Yin SC, Nazar LF (2001) Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem Solid State Lett 4:A170–A172

    Article  Google Scholar 

  4. Dominko D, Gaberscek M, Drofenik J, Bele M, Jamnik J (2003) Influence of carbon black distribution on performance of oxide cathodes for Li ion batteries. Electrochim Acta 48:3709–3716

    Article  Google Scholar 

  5. Ravet N, Goodenough JB, Besner S, Simoneau M, Hovington P, Armand M (1999) Improved iron based cathode material. In: Proceedings of the 196th ECS meeting, Honolulu, Oct 1999, Extended Abstract no 127

    Google Scholar 

  6. Ravet N, Chouinard Y, Magnan JF, Besner S, Gauthier M, Armand M (2001) Electroactivity of natural and synthetic triphylite. J Power Sources 97:503–507

    Article  Google Scholar 

  7. Bewlay SL, Konstantinov K, Wang GX, Dou SX, Liu HK (2004) Conductivity improvements to spray-produced LiFePO4 by addition of a carbon source. Mater Lett 58:1788–1791

    Article  Google Scholar 

  8. Julien CM, Mauger A, Ait-Salah A, Massot M, Gendron F, Zaghib K (2007) Nanoscopic scale studies of LiFePO4 as cathode material in lithium-ion batteries for HEV application. Ionics 13:395–411

    Article  Google Scholar 

  9. Weppner W, Huggins R (1977) Determination of the kinetic parameters of mixed-conducting electrodes and applications to the system Li3Sb. J Electrochem Soc 124:1569–1578

    Article  Google Scholar 

  10. Chen Z, Dahn JR (2002) Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy and tap density. J Electrochem Soc 149:A1184–A1189

    Article  Google Scholar 

  11. Ravet N, Besner S, Simoneau M, Vallée A, Armand M, Magnan JF (2005) Electrode materials with high surface conductivity. US Patent 6,962,666, 8 Nov 2005

    Google Scholar 

  12. Nanjundaswamy KS, Padhi AK, Goodenough JB, Okada S, Ohtsuka H, Arai H, Yamaki J (1996) Synthesis, redox potential evaluation and electrochemical characteristics of NASICON-related-3D framework compounds. Solid State Ionics 92:1–10

    Article  Google Scholar 

  13. Pahdi AK, Manivannan M, Goodenough JB (1998) Tuning the position of the redox couples in materials with NASICON structure by anionic substitution. J Electrochem Soc 145:1518–1520

    Article  Google Scholar 

  14. Manthiram A, Goodenough JB (1989) Lithium insertion into Fe2(SO4)3 frameworks. J Power Sources 26:403–408

    Article  Google Scholar 

  15. Nyten A, Abouimrane A, Armand M, Gustafsson T, Thomas JO (2005) Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material. Electrochem Commun 7:156–160

    Article  Google Scholar 

  16. Barker J, Saidi MY, Swoyer JL (2003) Electrochemical insertion properties of the novel lithium vanadium fluorophosphate, LiVPO4F. J Electrochem Soc 150:A1394–A1398

    Article  Google Scholar 

  17. Zaghib K, Mauger A, Julien CM (2012) Overwiew of olivines in lithium batteries for green transportation and energy storage. J Solid State Electrochem 16:835–845

    Article  Google Scholar 

  18. Julien CM, Zaghib K, Mauger A, Groult H (2012) Enhanced electrochemical properties of LiFePO4 as positive electrode of Li-ion batteries for HEV application. Adv Chem Eng Sci 2:321–329

    Google Scholar 

  19. Fergus JW (2010) Recent developments in cathode materials for lithium ion batteries. J Power Sources 195:939–954

    Article  Google Scholar 

  20. Ait-Salah A, Mauger A, Julien CM, Gendron F (2006) Nanosized impurity phases in relation to the mode of preparation of LiFeO4 effects. Mater Sci Eng, B 129:232–244

    Article  Google Scholar 

  21. Ait-Salah A, Mauger A, Zaghib K, Goodenough JB, Ravet N, Gauthier M, Gendron F, Julien CM (2006) Reduction of Fe3+ impurities in LiFePO4 from the pyrolysis of organic precursor used for carbon deposition. J Electrochem Soc 153:A1692–A1701

    Article  Google Scholar 

  22. Zaghib K, Dontigny M, Charest P, Labrecque JF, Guerfi A, Kopec M, Mauger A, Gendron F, Julien CM (2010) LiFePO4: from molten ingot to nanoparticles with high-rate performance in Li-ion batteries. J Power Sources 195:8280–8288

    Article  Google Scholar 

  23. Brochu F, Guerfi A, Trottier J, Kopeć M, Mauger A, Groult H, Julien CM, Zaghib K (2012) Structure and electrochemistry of scaling nano C-LiFePO4 synthesized by hydrothermal route: complexing agent effect. J Power Sources 214:1–6

    Article  Google Scholar 

  24. Vediappan K, Guerfi A, Gariépy V, Demopoulos GP, Hovington P, Trottier J, Mauger A, Julien CM, Zaghib K (2014) Stirring effect in hydrothermal synthesis of C-LiFePO4. J Power Sources 266:99–106

    Article  Google Scholar 

  25. Herle PS, Ellis B, Coombs N, Nazar LF (2004) Nano-network electronic conduction in iron and nickel olivine phosphates. Nat Mater 3:147–152

    Article  Google Scholar 

  26. Ait-Salah A, Dodd J, Mauger A, Yazami R, Gendron F, Julien CM (2006) Structural and magnetic properties of LiFePO4 and lithium extraction effects. Z Allg Inorg Chem 632:1598–1605

    Article  Google Scholar 

  27. Ellis BL, Lee KT, Nazar LF (2010) Positive electrode materials for Li-ion and Li-batteries. Chem Mater 22:691–714

    Article  Google Scholar 

  28. Ravet N, Gauthier M, Zaghib K, Goodenough JB, Mauger A, Gendron F, Julien CM (2007) Mechanism of the Fe3+ reduction at low temperature for LiFePO4 synthesis from polymeric precursor. Chem Mater 19:2595–2602

    Article  Google Scholar 

  29. Laffont L, Delacourt C, Gibot P, Wu MY, Kooyman P, Masquelier C, Tarascon JM (2006) Study of the LiFePO4/FePO4 two-phase system by high-resolution electron energy loss spectroscopy. Chem Mater 18:5520–5529

    Article  Google Scholar 

  30. Zaghib K, Mauger A, Gendron F, Julien CM (2008) Surface effects on the physical and electrochemical properties of thin LiFePO4 particles. Chem Mater 20:462–469

    Article  Google Scholar 

  31. Yang S, Zavajil PY, Whittingham MS (2001) Hydrothermal synthesis of lithium iron phosphate cathodes. Electrochem Commun 3:505–508

    Google Scholar 

  32. Sato M, Tajimi S, Okawa H, Uematsu K, Toda K (2002) Preparation of iron phosphate cathode material of Li3Fe2(PO4)3 by hydrothermal reaction and thermal decomposition processes. Solid State Ionics 152–153:247–251

    Google Scholar 

  33. Dokko K, Koizumi S, Kanamura K (2006) Electrochemical reactivity of LiFePO4 prepared by hydrothermal method. Chem Lett 35:338–339

    Google Scholar 

  34. Dokko K, Koizumi S, Sharaishi K, Kananura K (2007) Electrochemical properties of LiFePO4 prepared via hydrothermal route. J Power Sources 165:656–659

    Google Scholar 

  35. Jin B, Gu HB (2008) Preparation and characterization of LiFePO4 cathode materials by hydrothermal method. Solid State Ionics 178:1907–1914

    Google Scholar 

  36. Murugan AV, Muraliganth T, Manthiram A (2009) One-pot microwave-hydrothermal synthesis and characterization of carbon-coated LiMPO4 (M=Mn, Fe, and Co) cathodes. J Electrochem Soc 156:A79–A83

    Google Scholar 

  37. Kim DH, Kim J (2006) Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties. Electrochem Solid State Lett 9:A439–A442

    Google Scholar 

  38. Kim DH, Kim J (2007) Synthesis of LiFePO4 nanoparticles and their electrochemical properties. J Phys Chem Solids 68:734–737

    Google Scholar 

  39. Kim DH, Lim JS, Kang JW, Kim EJ, Ahn HY, Kim J (2007) A new synthesis route to nanocrystalline olivine phosphates and their electrochemical properties. J Nanosci Nanotechnol 7:3949–3953

    Google Scholar 

  40. Azib T, Ammar S, Nowak S, Lau-Truing S, Groult H, Zaghib K, Mauger A, Julien CM (2012) Crystallinity of nano C-LiFePO4 prepared by the polyol process. J Power Sources 217:220–228

    Google Scholar 

  41. Saravanan K, Reddy MV, Balaya P, Gong H, Chowdari BVR, Vittal JJ (2009) Storage performance of LiFePO4 nanoplates. J. Mater. Chem 19:605–610

    Google Scholar 

  42. Yang H, Wu XL, Cao MH, Guo YG (2009) Solvothermal synthesis of LiFePO4 hierarchically dumbbell-like microstructures by nanoplate self-assembly and their application as a cathode material in lithium-ion batteries. J Phys Chem C 113:3345–3351

    Google Scholar 

  43. Arcon D, Zorko A, Dominko R, Jaglicic Z (2004) A comparative studies of magnetic properties of LiFePO4 and LiMnPO4. J Phys C Condens Matter 16:5531–5548

    Article  Google Scholar 

  44. Geller S, Durand JL (1960) Refinement of the structure of LiMnPO4. Acta Crystallogr 13:325–329

    Article  Google Scholar 

  45. Santorro RP, Newnham RE (1987) Antiferromagnetism in LiFePO4. Acta Crystallogr 22:344–347

    Article  Google Scholar 

  46. Streltsov VA, Belokoneva EL, Tsirelson VG, Hansen NK (1993) Multipole analysis of the electron density in triphylite LiFePO4 using X-ray diffraction data. Acta Crystallogr B 49:147–153

    Article  Google Scholar 

  47. Rousse G, Rodriguez-Carvajal J, Patoux S, Masquelier C (2003) Magnetic structures of the triphylite LiFePO4 and its delithiated form FePO4. Chem Mater 15:4082–4090

    Article  Google Scholar 

  48. Losey A, Rakovan J, Huges J, Francis CA, Dyar MD (2004) Structural variation in the lithiophilite-triphylite series and other olivine-group structures. Canad Mineral 42:1105–1108

    Article  Google Scholar 

  49. Andersson AS, Thomas JO (2001) The source of first-cycle capacity loss in LiFePO4. J Power Sources 97–98:498–502

    Article  Google Scholar 

  50. Nyten A, Thomas JO (2006) A neutron powder diffraction study of LiCoxFe1−xPO4 for x = 0, 0.25, 0.40, 0.60 and 0.75. Solid State Ionics 177:1327–1330

    Article  Google Scholar 

  51. Beale AM, Sankar G (2002) Following the structural changes in iron phosphate catalysts by in situ combined XRD/QuEXAFS technique. J Mater Chem 12:3064–3072

    Article  Google Scholar 

  52. Yamada A, Chung SC, Hinokuma K (2001) Optimized LiFePO4 for lithium battery cathodes. J Electrochem Soc 148:A224–A229

    Google Scholar 

  53. Andersson AS, Thomas JO (2001) The source of first-cycle capacity loss in LiFePO4. J Power Sources 97–98:498–502

    Google Scholar 

  54. Julien CM, Zaghib K, Mauger A, Massot M, Ait-Salah A, Selmane M, Gendron F (2006) Characterization of the carbon-coating onto LiFePO4 particles used in lithium batteries. J Appl Phys 100:063511

    Article  Google Scholar 

  55. Ait-Salah A, Jozwiak P, Zaghib K, Garbarczyk J, Gendron F, Mauger A, Julien CM (2006) FTIR features of lithium-iron phosphates as electrode materials for rechargeable lithium batteries. Spectrochim Acta A 65:1007–1013

    Google Scholar 

  56. Julien CM, Ait-Salah A, Gendron F, Morhange JF, Mauger A, Ramana CV (2006) Microstructure of LiXPO4 (X=Ni Co, Mn) prepared by solid-state chemical reaction. Scripta Mater 55:1179–1182

    Article  Google Scholar 

  57. Burba CM, Frech R (2006) In situ transmission FTIR spectroelectrochemistry: A new technique for studying lithium batteries. Electrochem Acta 52:780–785

    Article  Google Scholar 

  58. Paques-Ledent MT, Tarte P (1974) Vibrational studies of olivine-type compounds—II orthophosphates, -arsenates and -vanadates AIBIIXVO4. Spectrochim Acta, Part A 30:673–689

    Google Scholar 

  59. Ait-Salah A, Zaghib K, Mauger A, Gendron F, Julien CM (2006) Magnetic studies of the carbothermal effect on LiFePO4. Phys Status Solidi A 203:R1–R3

    Article  Google Scholar 

  60. Doeff MM, Hu Y, McLarnon F, Kostecki R (2003) Effect of surface carbon structure on the electrochemical performance of LiFePO4. Electrochem Solid State Lett 6:A207–A209

    Article  Google Scholar 

  61. Arnold G, Garche J, Hemmer R, Ströbele S, Vogler C, Wohlfgang-Mehrens M (2003) Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique. J Power Sources 119–121:247–251

    Google Scholar 

  62. Axmann P, Stinner C, Wohlfahrt-Mehrens M, Mauger A, Gendron F, Julien CM (2009) Non-stoichiometric LiFePO4: defects and related properties. Chem Mater 21:1636–1644

    Google Scholar 

  63. Zaghib K, Dontigny M, Charest P, Labrecque JF, Guerfi A, Kopec M, Mauger A, Gendron F, Julien CM (2008) Aging of LiFePO4 upon exposure to H2O. J Power Sources 185:698–710

    Google Scholar 

  64. Porcher W, Moreau P, Lestriez B, Jouanneau S, Guyomard D (2008) Electrocvhem Solid State Lett 11:A4–A8

    Google Scholar 

  65. Zaghib K, Ravet N, Gauthier M, Gendron F, Mauger A, Goodenough JB, Julien CM (2006) Optimized electrochemical performance of LiFePO4 at 60 °C with purity controlled by SQUID magnetometry. J Power Sources 163:560–566

    Google Scholar 

  66. Bramnik NN, Ehrenberg H (2008) Precursor-based synthesis and electrochemical performance of LiMnPO4. J Alloys Compd 464:259–264

    Article  Google Scholar 

  67. Rissouli K, Benkhouja K, Ramos-Barrado JR, Julien C (2003) Electrical conductivity in lithium orthophosphates. Mater Sci Eng B 98:185–189

    Google Scholar 

  68. Drezen T, Kwon NH, Bowen P, Teerlinck I, Isono M, Exnar I (2007) Effect of partic1e size on LiMnPO4 cathodes. J Power Sources 174:949–953

    Article  Google Scholar 

  69. Wang D, Buqa H, Crouzet M, Deghenghi G, Drezen T, Exnar I, Kwon NH, Miners J, Poletto L, Gratzel M (2009) High-performance. nano-structured LiMnPO4 synthesized via a polyol method. J Power Sources 189:624–628

    Article  Google Scholar 

  70. Martha SK, Markovsky B, Grinblat J, Gofer Y, Haik O, Zinigrad E, Aurbach D, Drezen T, Wang D, Deghenghi G, Exnar I (2009) LiMnPO4 as an advanced cathode material for rechargeable lithium batteries. J Electrochem Soc 156:A541–A552

    Article  Google Scholar 

  71. Liu JL, Hu DG, Huang T, Yu AS (2012) Synthesis of flower-like LiMnPO4/C with precipitated NH4MnPO4•H2O as precursor. J Alloys Compd 518:58–62

    Article  Google Scholar 

  72. Bakenov Z, Taniguchi I (2010) LiMgxMn1–xPO4/C cathodes for lithium batteries prepared by a combination of spray pyrolysis with wet ballmilling. J Electrochem Soc 157:A430–A436

    Article  Google Scholar 

  73. Doan TNL, Bakenov Z, Taniguchi I (2010) Preparation of carbon coated LiMnPO4 powders by a combination of spray pyrolysis with dry ball-milling followed by heat treatment. Adv Powder Technol 21:187–196

    Article  Google Scholar 

  74. Xiao J, Xu W, Choi D, Zhang J (2010) Synthesis and characterization of lithium manganese phosphate by a precipitation method. J Electrochem Soc 157:A142–A147

    Article  Google Scholar 

  75. Fujimoto D, Lei Y, Huang ZH, Kang F, Kawamura J (2014) Synthesis and electrochemical performance of LiMnPO4 by hydrothermal method. Int J Electrochem 2014:768912

    Article  Google Scholar 

  76. Devaraju MK, Honma I (2012) Hydrothermal and solvothermal process towards development of LiMPO4 (M=Fe, Mn) nanomaterials for lithium-ion batteries. Adv Ener Mater 2:284–297

    Article  Google Scholar 

  77. Zhou F, Zhu P, Fu X, Chen R, Sun R, Wong C (2014) Comparative study of LiMnPO4 cathode materials synthesized by solvothermal methods using different manganese salts. Cryst Eng Comm 16:766–774

    Article  Google Scholar 

  78. Wang D, Buqa H, Crouzet M et al (2009) High-performance, nano-structured LiMnPO4 synthesized via a polyol method. J Power Sources 189:624–628

    Article  Google Scholar 

  79. Bakenov Z, Taniguchi I (2011) LiMnPO4 olivine as a cathode for lithium batteries. Open Mater Sci J 5:222–227

    Article  Google Scholar 

  80. Kwon NH, Fromm KM (2012) Enhanced electrochemical performance of <30 nm thin LiMnPO4 nanorods with reduced amount of carbon as a cathode for lithium ion batteries. Food Chem 133:1435–1440

    Article  Google Scholar 

  81. Kumar PR, Venkateswarlu M, Misra M, Mohanty AK, Satyanarayana N (2011) Carbon coated LiMnPO4 nanorods for lithioum batteries. J Electrochem Soc 158:A227–A230

    Article  Google Scholar 

  82. Yuan LF, Ge LL, Shen YH, Zhang H, Wang CP, Xie AJ (2013) Synthesis and electrochemical properties of Cu-doped LiMnPO4/C nanorods as cathode materials of lithium-ion batteries. J Nano Res 25:1–7

    Article  Google Scholar 

  83. Pivko M, Bele M, Tchernychova E, Logar NZ, dominko R, Gaberscek M (2012) Synthesis of nanometric LiMnPO4 via a two-step technique. Chem Mater 24:1041–1047

    Article  Google Scholar 

  84. Kim TA, Park HS, Lee MH, Lee SY, Song HK (2012) Restricted growth of LiMnPO4 nanoparticles evolved from a precursor seed. J Power Sources 210:1–6

    Article  Google Scholar 

  85. Kim J, Seo DH, Kim SW, Park YU, Kang K (2010) Mn based olivine electrode material with high power and energy. Chem Commun 46:1305–1307

    Article  Google Scholar 

  86. Lee KT, Kan WH, Nazar LF (2009) Proof of intercrystallite ionic transport in LiMPO4 electrodes (M=Fe, Mn). J Am Chem Soc 131:6044–6045

    Article  Google Scholar 

  87. Choi D, Wang D, Bae IT, Xiaot J, Nie Z, Wang W, Yiswanathan Y, Lee Y, Zhang JG, Graff G, Yang Z, Liu J (2010) LiMnPO4 nanoplate grown via solid-state reaction in molten hydrocarbon for Li-ion battery cathode. Nano Lett 10(8):2799–2805

    Article  Google Scholar 

  88. Li L, Liu J, Chen L, Xu H, Yang J, Qian Y (2013) Effect of different carbon sources on the electrochemical properties of rod-like LMP/C nanocomposites. RSC Adv 3:6847–6852

    Article  Google Scholar 

  89. Zhao M, Fu Y, Xu N, Li G, Wu M, Gao X (2014) High performance LiMnPO4/C prepared by a crystallite size control method. J Mater Chem A 2:15070–15077

    Article  Google Scholar 

  90. Chen G, Richardson TJ (2010) Thermal instability of olivine-type LiMnPO4 cathodes. J Power Sources 195:1221–1224

    Article  Google Scholar 

  91. Zhong S, Xu Y, Li Y, Zeng H, Li W, Wang J (2012) Synthesis and electrochemical performance of LiMnPO4/C composites cathode materials. Rare Met 31:474–478

    Google Scholar 

  92. Wang L, Sun W, Li J, Gao J, He X, Jiang C (2012) Synthesis of electrochemically active LiMnPO4 via MnPO4•H2O with different morphology prepared by facile precipitation. Int J Electrochem Sci 7:3591–3600

    Google Scholar 

  93. Barpanda P, Djellab K, Recham N, Armand M, Tarascon JM (2011) Direct and modified ionothermal synthesis of LiMnPO4 with tunable morphology for rechargeable Li-ion batteries. J Mater Chem 21:10143–10152

    Google Scholar 

  94. Murugan AV, Muraliganth T, Ferreira PJ, Manthiram A (2009) Dimensionally modulated, single-crystalline LiMPO4 (M=Mn, Fe Co, and Ni) with nano-thumblike shapes for high-power energy storage. Inorg Chem 48:946–952

    Google Scholar 

  95. Kosova NV, Devyatkina ET, Ancharov AI, Markov AV, Karnaushenko DD, Makukha VK (2012) Structural studies of nanosized LiFe0.5Mn0.5PO4 under cycling by in situ synchrotron diffraction. Solid State Ionics 225:564–569

    Article  Google Scholar 

  96. Wang H, Yang Y, Liang Y, Cui LF, Casalongue HS, Li Y, Hong G, Cui Y, Da H (2011) LiMn1−xFexPO4 nanorods grown on graphene sheets for ultrahigh-rate-performance lithium ion batteries. Angew Chem Int Ed 50:7364–7368

    Article  Google Scholar 

  97. Kopec M, Yamada A, Kobayashi G, Nishimura S, Kanno R, Mauger A, Gendron F, Julien CM (2009) Structural and magnetic properties of Li x (Mn y Fe1−y )PO4 electrode materials for Li-ion batteries. J Power Sources 189:1154–1163

    Article  Google Scholar 

  98. Zaghib K, Mauger A, Gendron F, Massot M, Julien CM (2008) Insertion properties of LiFe0.5Mn0.5PO4 electrode materials for Li-ion batteries. Ionics 14:371–376

    Article  Google Scholar 

  99. Gardiner GR, Islam MS (2010) Anti-site defects and ion migration in the LiFe0.5Mn0.5PO4 mixed-metal cathode material. Chem Mater 22:1242–1248

    Google Scholar 

  100. Trottier J, Mathieu MC, Guerfi A, Zaghib K, Mauger A, Julien CM (2013) LiMnyFe1−yPO4 (0.5 ≤ y ≤ 0.8) cathode materials grown by hydrothermal route: electrochemical performance. ECS Trans 50–24:109–114

    Google Scholar 

  101. Hong Y, Tang Z, Hong Z, Zhang Z (2014) LiMn1−xFexPO4 (x = 0, 0.1, 0.2) nanorods synthesized by a facile solvothermal approach as high performance cathode materials for lithium-ion batteries. J Power Sources 248:655–659

    Google Scholar 

  102. Truong QD, Devaraju MK, Ganbe Y, Tomai T, Honma I (2013) Controlling the shape of LiCoPO4 nanocrystals by supercritical fluid process for enhanced energy storage properties. Sci Rep 4:3975

    Google Scholar 

  103. Wang F, Yang J, Nuli Y, Wang J (2011) Novel hedgehog-like 5 V LiCoPO4 positive electrode material for rechargeable lithium battery. J Power Sources 196:4806–4810

    Article  Google Scholar 

  104. Su J, Wei BQ, Rong JP, Yin WY, Ye ZX, Tian XQ, Ren L, Cao MH, Hu CW (2011) A general solution-chemistry route to the synthesis LiMPO4 (M=Mn, Fe and Co) nanocrystals with [010] orientation for lithium ion batteries. J Solid State Chem 184:2909–2919

    Article  Google Scholar 

  105. Wolfenstine J, Allen J (2004) LiNiPO4–LiCoPO4 solid solutions as cathodes. J Power Sources 136:150–153

    Article  Google Scholar 

  106. Ni J, Gao L, Lu L (2013) Carbon coated lithium cobalt phosphate for Li-ion batteries: Comparison of three coating techniques. J Power Sources 221:35–41

    Article  Google Scholar 

  107. Wolfenstine J, Read J, Allen J (2007) Effect of carbon on the electronic conductivity and discharge capacity LiCoPO4. J Power Sources 163:1070–1073

    Google Scholar 

  108. Wolfenstine J, Lee U, Poese B, Allen J (2005) Effect of oxygen partial pressure on the discharge capacity of LiCoPO4. J Power Sources 144:226–230

    Google Scholar 

  109. Wolfenstine J, Poese B, Allen J (2004) Chemical oxidation of LiCoPO4. J Power Sources 138:281–282

    Google Scholar 

  110. Okada S, Sawa S, Egashira M, Yamaki JI, Tabuchi M, Kageyama H, Konishi T, Yoshino A (2001) Cathode properties of phospho-olivine LiMPO4 for lithium secondary batteries. J Power Sources 97–98:430–432

    Google Scholar 

  111. Bramnik NN, Bramnik KG, Baehtz C, Ehrenberg H (2005) Study of the effect of different synthesis routes on Li extraction–insertion from LiCoPO4. J Power Sources 145:74–81

    Google Scholar 

  112. Wolfenstine J (2006) Electrical conductivity of doped LiCoPO4. J Power Sources 158:1431–1435

    Google Scholar 

  113. Wang F, Yang J, Li YN, Wang J (2011) Novel hedgehog-like 5 V LiCoPO4 positive electrode material for rechargeable lithium battery. J Power Sources 196:4806–4810

    Google Scholar 

  114. Nakayama M, Goto S, Uchimoto Y, Wakihara M, Kitayama Y, Miyanaga T, Watanabe I (2005) X-ray absorption spectroscopic study on the electronic structure of Li1−xCoPO4 electrodes as 4.8 V positive electrodes for rechargeable lithium ion batteries. J Phys Chem B 109:11197–11203

    Google Scholar 

  115. Bramnik NN, Nikolowski K, Baehtz C, Bramnik KG, Ehrenberg H (2007) Phase transition occurring upon lithium insertion-extraction of LiCoPO4. Chem Mater 19:908–915

    Google Scholar 

  116. Zhao Y, Wang S, Zhao C, Xia D (2009) Synthesis and electrochemical performance of LiCoPO4 micron-rods by dispersant-aided hydrothermal method for lithium ion batteries. Rare Met 28:117–121

    Google Scholar 

  117. Bramnik NN, Nikolowski K, Trots DM, Ehrenberg H (2008) Thermal stability of LiCoPO4 cathodes. Electrochem Solid State Lett 11:A89–A93

    Google Scholar 

  118. Jang IC, Lim HH, Lee SB, Karthikeyan K, Aravindan V, Kang KS, Yoon WS, Cho WI, Lee YS (2010) Preparation of LiCoPO4 and LiFePO4 coated LiCoPO4 materials with improved battery performance. J Alloys Compd 497:321–324

    Google Scholar 

  119. Bramnik NN, Nikolowski K, Trots DM, Ehrenberg H (2008) Thermal stability of LiCoPO4 cathodes. Electrochem Solid State Lett 11:A89–A93

    Google Scholar 

  120. Aravindan V, Cheah YL, Chui Ling WC, Madhavi S (2012) Effect of LiBOB additive on the electrochemical performance of LiCoPO4. J Electrochem Soc 159:A1435–A1439

    Google Scholar 

  121. Wolfenstine J, Allen J (2005) Ni3+/Ni2+ redox potential in LiNiPO4. J Power Sources 142:389–390

    Google Scholar 

  122. Karthickprabhu S, Hirankumar G, Maheswaran A, Daries-Bella RS, Sanjeeviraja C (2014) Structural, morphological, vibrational and electrical studies on Zn doped nanocrystalline LiNiPO4. Mater Sci Forum 781:145–153

    Article  Google Scholar 

  123. Dimesso L, Becker D, Spanheimer C, Jaegermann W (2012) Investigation of graphitic carbon foams/LiNiPO4 composites. J Solid State Electrochem 16:3791–3798

    Article  Google Scholar 

  124. Piana M, Arrabito M, Bodoardo S, D’Epifanio A, Satolli D, Croce F, Scrosati B (2002) Characterization of phospho-olivines as materials for Li-ion celle cathodes. Ionics 8:17–26

    Article  Google Scholar 

  125. Julien CM, Mauger A, Zaghib K, Veillette R, Groult H (2012) Structural and electronic properties of the LiNiPO4 orthophosphate. Ionics 18:625–633

    Article  Google Scholar 

  126. Herle PS, Ellis B, Coombs N, Nazar LF (2004) Nano-network electronic conduction in iron and nickel olivine phosphates. Nat Mater 3:147–152

    Article  Google Scholar 

  127. Sugiyama J, Nozaki H, Harada M, Kamazawa K, Ikedo Y, Miyake Y, Ofer O, Mansson M, Ansaldo EJ, Chow KH (2012) Diffusive behaviour in LiMPO4 with M=Fe Co, Ni probed by muon-spin relaxation. Phys Rev B 85:054111

    Article  Google Scholar 

  128. Wang D, Xiao J, Xu W, Zhang JG (2010) Investigation of LiNiPO4 as a cathode material for lithium ion battery. The 15th international meeting on lithium batteries, IMLB2010, abstract no°372

    Google Scholar 

  129. Minakshi M, Singh P, Ralph D, Appadoo D, Blackford M, Ionescu M (2012) Structural characteristics of olivine Li(Mg0.5Ni0.5)PO4 via TEM analysis. Ionics 18:583–590

    Article  Google Scholar 

  130. Ramana CV, Ait-Salah A, Utsunomiya S, Becker U, Mauger A, Gendron F, Julien CM (2006) Structural characteristics of lithium nickel phosphate olivine studied using analytical electron microscopy and raman spectroscopy. Chem Mater 18:3788–3794

    Article  Google Scholar 

  131. Cheruku R, Govindaraj G (2014) Structural and electrical conductivity studies of nanocrystalline olivine type LiNiPO4 material. Int J ChemTech Res 6:2017–2201

    Google Scholar 

  132. Goñi A, Lezama L, Barberis GE, Pizarro JL, Arriortua MI, Rojo T (1996) Magnetic properties of the LiMPO4 (M=Co, Ni) compounds. J Magn Magn Mater 164:251–255

    Article  Google Scholar 

  133. Santoro RP, Segal DJ, Newnham RE (1966) Magnetic properties of LiCoPO4 and LiNiPO4. J Phys Chem Solids 27:1192–1193

    Article  Google Scholar 

  134. Toft-Petersen R, Jensen J, Jensen TBS, Andersen NH, Christensen NB, Niedemayer C, Kenzelmann M, Skoulatos M, Le MD, Lefmann K, Hensen SR, Li J, Zarestky JL, Vaknin D (2011) High-field magnetic phase transition and spin excitations in magnetoelectric LiNiPO4. Phys Rev B 84:054408

    Article  Google Scholar 

  135. Vaknin D, Zarestky JL, Rivera JP, Schmid H (2004) Commensurate-incommensurate magnetic phase transition in magnetoelectric single crystal LiNiPO4. Phys Rev Lett 92:207201

    Article  Google Scholar 

  136. Fomin VI, Gnezdilov VP, Kurnosov VS, Peschanskii AV, Yeremenko AV, Schmid H, Rivera JP, Gentil S (2002) Raman scattering in a LiNiPO4 single crystal. Low Temp Phys 28:203–209

    Article  Google Scholar 

  137. Ficher CAJ, Prieto VMH, Islam MS (2008) Lithium battery materials LiMPO4 (M=Mn, Fe, Co and Ni): insights into defect association, transport mechanisms and doping behaviour. Chem Mater 20:5907–5915

    Article  Google Scholar 

  138. Garcia-Moreno O, Alvarez-Vega M, Garcia-Alvarado F, Garcia-Jaca J, Garcia-Amores JM, Sanjuan ML, Amador U (2001) Influence of the structure on the electrochemical performance of lithium transition metal phosphates as cathodic materials in rechargeable lithium batteries: a new high-pressure form of LMPO4 (M=Fe and Ni). Chem Mater 13:1570–1576

    Article  Google Scholar 

  139. Zhou F, Cococcioni M, Kang K, Ceder G (2004) The Li intercalation potential of LiMPO4 and LiMSiO4 olivines with M=Fe, Mn Co, Ni. Electrochem Commun 6:1144–1148

    Google Scholar 

  140. Howard WF, Spotnitz RM (2007) Theoretical evaluation of high-energy lithium metal phosphate cathode materials in Li-ion batteries. J Power Sources 165:887–891

    Google Scholar 

  141. Chevrier VL, Ong SP, Armiento R, Chan MKY, Ceder G (2010) Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds. Phys Rev B 82:075122

    Google Scholar 

  142. Rommel SM, Schall N, Brünig C, Weihrich R (2014) Challenges in the synthesis of high voltage electrode materials for lithium-ion batteries: a review on LiNiPO4. Monatsh Chem 145:385–404

    Google Scholar 

  143. Kausarjanjua N, Mumtaz M, Yabuq A, Sabahat S, Mujtaba A (2014) Electrocatalytic activity of LiNiPO4 and the copper doped analogues towards oxygen reduction. Nucleus 51:109–115

    Google Scholar 

  144. Yang J, Xu JJ (2006) Synthesis and characterization of carbon-coated lithium transition metal phosphates LiMPO4 (M=Fe, Mn Co, Ni) prepared via nonaqueous sol-gel route. J Electrochem Soc 153:A716–A723

    Google Scholar 

  145. Tsai A (2011) Synthesis and characterization of LiNiPO4 nanocrystals via microemulsion method as a new class of electrocatalyst for oxygen reduction. Master’s thesis, New Jersey Graduate School, New Brunswick

    Google Scholar 

  146. Prabu M, Selvasekarapandian S (2012) Dielectric and modulus studies of LiNiPO4. Mater Chem Phys 134:366–370

    Google Scholar 

  147. Gangulibabu DB, Kalaiselvi N, Jayaprakash N, Periasamy P (2009) CAM sol-gel synthesized LiMPO4 (M=Co, Ni) cathodes for rechargeable lithium batteries. J Sol-Gel Sci Technol 49:137–144

    Google Scholar 

  148. Karthickprabhu S, Hirankumar G, Maheswaran A, Daries-Bella RS, Sanjeeviraja C (2013) Structural and conductivity studies on lanthanum doped LiNiPO4 prepared by polyol method. In: Chowdari BVR, Kawamura J, Mizusaki J, Amezawa K (eds) Proceedings of the 13th Asian conference on solid state ionics, Sendai, Japan 17–20 July 2012, World Scientific, Singapore

    Google Scholar 

  149. Piana M, Arrabito M, Bodoardo S, D’Epifanio A, Satolli D, Croce F, Scrosati B (2002) Characterization of phospho-olivines as materials for Li-ion celle cathodes. Ionics 8:17–26

    Google Scholar 

  150. Dimesso L, Jacke S, Spanheimer C, Jaegermann W (2012) Investigation on LiCoPO4 powders as cathode materials annealed under different atmospheres. J Solid State Electrochem 16:3911–3919

    Google Scholar 

  151. Dimesso L, Spanheimer C, Jaegermann W (2013) Effect of the Mg-substitution on the graphitic carbon foams—LiNi1−yMgyPO4 composites as possible cathodes materials for 5 V applications. Mater Res Bull 48:559–565

    Google Scholar 

  152. Tabassam L, Giuli G, Moretti A, Nobili F, Marassi R, Minicucci M, Gunnella R, Olivi L, DiCicco A (2012) Structural study of LiFePO4-LiNiPO4 solid solutions. J Power Sources 213:287–295

    Google Scholar 

  153. Qing R, Yang MC, Meng YS, Sigmund W (2013) Synthesis of LiNixFe1−xPO4 solid solution as cathode materials for lithium ion batteries. Electrochim Acta 108:827–832

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Zaghib .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zaghib, K., Mauger, A., Julien, C.M. (2015). Olivine-Based Cathode Materials. In: Zhang, Z., Zhang, S. (eds) Rechargeable Batteries. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-15458-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15458-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15457-2

  • Online ISBN: 978-3-319-15458-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics