Skip to main content

Fiber Orientation Distribution Functions and Orientation Tensors for Different Material Symmetries

  • Conference paper
Visualization and Processing of Higher Order Descriptors for Multi-Valued Data

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

In this paper we give closed-form expressions of the orientation tensors up to the order four associated with some axially-symmetric orientation distribution functions (ODF), including the well-known von Mises-Fisher, Watson, and de la Vallée Poussin ODFs. Each is characterized by a mean direction and a concentration parameter. Then, we use these elementary ODFs as building blocks to construct new ones with a specified material symmetry and derive the corresponding orientation tensors. For a general ODF we present a systematic way of calculating the corresponding orientation tensors from certain coefficients of the expansion of the ODF in spherical harmonics.

Mathematics Subject Classification (2010): 74A40, 74E10, 62H11, 92C10

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Advani, S.G., Tucker III, C.L.: The use of tensors to describe and predict fiber orientation in short fiber composites. J. Rheol. 31(8), 751–784 (1987)

    Article  MATH  Google Scholar 

  2. Advani, S.G., Tucker III, C.L.: Closure approximations for three-dimensional structure tensors. J. Rheol. 34(3), 367–386 (1990)

    Article  Google Scholar 

  3. Backus, G.: A geometric picture of anisotropic elastic tensors. Rev. Geophys. Space Phys. 8(3), 633–671 (1970)

    Article  Google Scholar 

  4. Brachat, J., Comon, P., Mourrain, B., Tsigaridas, E.P.: Symmetric tensor decomposition. Linear Algebra Appl. 433(11–12), 1851–1872 (2010)

    Article  MathSciNet  Google Scholar 

  5. Chebbi, Z.: Study of brain white matter fiber crossings using fourth-order diffusion tensors estimated from HARDI data. Master’s thesis, National Engineering School at Tunis (2009)

    Google Scholar 

  6. Cieslinski, M.M., Steel, P.J., Lincoln, S.F., Easton, C.J.: Centrosymmetric and non-centrosymmetric packing of aligned molecular fibers in the solid state self assemblies of cyclodextrin-based rotaxanes. Supramol. Chem. 18, 529–536 (2006)

    Article  Google Scholar 

  7. Eberlea, A.P.R., Vélez-Garcíab, G.M., Bairda, D.G., Wapperomc P.: Fiber orientation kinetics of a concentrated short glass fiber suspension in startup of simple shear flow. J. Non-Newtonian Fluid Mech. 165, 110–119 (2010)

    Article  Google Scholar 

  8. Fisher, N.I., Lewis, T., Embleton, B.J.J.: Statistical Analysis of Spherical Data. Cambridge University Press, Cambridge (1987)

    Book  Google Scholar 

  9. Florack, L., Balmashnova, E.: Two canonical representations for regularized high angular resolution diffusion imaging. In: Alexander, D., Gee, J., Whitaker, R. (eds.) MICCAI Workshop on Computational Diffusion MRI, New York, pp. 85–96 (2008)

    Google Scholar 

  10. Florack, L., Balmashnova, E., Astola, L., Brunenberg, E.: A new tensorial framework for single-shell high angular resolution diffusion imaging. J. Math. Imaging Vision 38(3), 171–181 (2010)

    Article  MathSciNet  Google Scholar 

  11. Ghosh, A., Megherbi, T., Oulebsir-Boumghar, F., Deriche, R.: Fiber orientation distribution from non-negative sparse recovery. In: IEEE 10th International Symposium on Biomedical Imaging (ISBI), 2013, pp. 254–257 (2013)

    Google Scholar 

  12. Goldacker, T., Abetz, V., Stadler, R., Erukhimovich, I., Leibler, L.: Non-centrosymmetric superlattices in block copolymer blends. Nature 398, 137–139 (1999)

    Article  Google Scholar 

  13. Gur, Y., Jiao, F., Zhu, S.X., Johnson, C.R.: White matter structure assessment from reduced HARDI data using low-rank polynomial approximations. In: Panagiotaki, E., O’Donnell, L., Schultz, T., Zhang, G.H. (eds.) Proceedings of the Computational Diffusion MRI, pp. 186–197 (2012)

    Google Scholar 

  14. Jack, D.A., Smith, D.E.: Elastic properties of short-fiber polymer composites, derivation and demonstration of analytical forms for expectation and variance from orientation tensors. J. Compos. Mater. 42(3), 277–308 (2008)

    Article  Google Scholar 

  15. Jones, M.N.: Spherical Harmonics and Tensors for Classical Field Theory. Wiley, New York (1985)

    Google Scholar 

  16. Kanatani, K.-I.: Distribution of directional data and fabric tensors. Int. J. Eng. Sci. 22(2), 149–164 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lakes, R.: Elastic and viscoelastic behavior of chiral materials. Int. J. Mech. Sci. 43(7), 1579–1589 (2001)

    Article  MATH  Google Scholar 

  18. Liu, C., Bammer, R., Acar, B., Moseley, M.E.: Characterizing non-gaussian diffusion by using generalized diffusion tensors. Magn. Reson. Med. 51, 924–937 (2004)

    Article  MATH  Google Scholar 

  19. Mardia, K.V.: Statistics of directional data. J. R. Stat. Soc. Ser. B 37(3), 349–393 (1975)

    MathSciNet  MATH  Google Scholar 

  20. Megherbi, T., Kachouane, M., Oulebsir-Boumghar, F., Deriche, R.: Crossing fibers detection with an analytical high order tensor decomposition. Comput. Math. Methods Med. 2014, 18 pp. (2014) [Article ID 476837]

    Google Scholar 

  21. Moakher, M.: Fourth-order Cartesian tensors: old and new facts, notions and applications. Q. J. Mech. Appl. Math. 61(2), 181–203 (2008)

    Article  MathSciNet  Google Scholar 

  22. Ostroverkhov, V., Ostroverkhova, O., Petschek, R.G., Singer, K.D., Sukhomlinova, L., Twieg, R.J., Wang, S.-X., Chien, L.C.: Optimization of the molecular hyperpolarizability for second harmonic generation in chiral media. Chem. Phys. 257, 263–274 (2000)

    Article  Google Scholar 

  23. Özarslan, E., Mareci, T.H.: Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging. Magn. Reson. Med. 50(5), 955–965 (2003)

    Article  Google Scholar 

  24. Özarslan, E., Shepherd, T.M., Vemuri, B.C., Blackband, S.J., Mareci, T.H.: Resolution of complex tissue microarchitecture using the diffusion orientation transform (DOT). NeuroImage 31(3), 1086–1103 (2006)

    Article  Google Scholar 

  25. Papenfuss, C., Ván, P.: Scalar, vectorial, and tensorial damage parameters from the mesoscopic background. Proc. Est. Acad. Sci. 57(3), 132–141 (2008)

    Article  Google Scholar 

  26. Schaeben, H.: A simple standard orientation density function: the hyperspherical de la Vallée Poussin kernel. Phys. Status Solidi (B) 200(2), 367–376 (1997)

    Google Scholar 

  27. Schultz, T., Seidel, H.-P.: Estimating crossing fibers: a tensor decomposition approach. IEEE Trans. Vis. Comput. Graph. 14(6), 1635–1642 (2008)

    Article  Google Scholar 

  28. Schultz, T., Fuster, A., Ghosh, A., Deriche, R., Florack, L., Lim, L.-H.: Higher-order tensors in diffusion imaging. In: Westin, C.F., Vilanova, A., Burgeth, B. (eds.) Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data. Mathematics and Visualization, pp. 129–161. Springer, Berlin/Heidelberg (2014)

    Google Scholar 

  29. Snieder, R.: A Guided Tour of Mathematical Methods for the Physical Sciences, 2nd edn. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  30. Tournier, J.-D., Calamante, F., Gadian, D.G., Connelly, A.: Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. NeuroImage 23(3), 1176–1185 (2004)

    Article  Google Scholar 

  31. Tuch, D.S.: Q-ball imaging. Magn. Reson. Med. 52(6), 1358–1372 (2004)

    Article  Google Scholar 

  32. van der Boogaart, K.G., Hielscher, R., Prestin, J., Schaeben, H.: Kernel-based methods for inversion of the Radon transform on SO(3) and their applications to texture analysis. J. Comput. Appl. Math. 199, 122–140 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Voyiadjis, G.Z., Kattan, P.I.: Evolution of fabric tensors in damage mechanics of solids with micro-cracks: Part I - Theory and fundamental concepts. Mech. Res. Commun. 34(2), 145–154 (2007)

    Article  MATH  Google Scholar 

  34. Wang, B., Zhou, J., Koschny, T., Kafesaki, M., Soukoulis, C.M.: Chiral metamaterials: simulations and experiments. J. Opt. A Pure Appl. Opt. 11, 114003 (2009)

    Article  Google Scholar 

  35. Watson, G.S.: Distributions on the circle and sphere. J. Appl. Probab. 19, 265–280 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maher Moakher .

Editor information

Editors and Affiliations

Appendix

Appendix

We give here the expressions for the normalized orientation-like tensors that appear in (33)–(36).

The vectors s 1, m, \(m = -1,\ldots,1\), which are obtained from \(\int _{S^{2}}S^{1,m}(\theta,\phi )\mathbf{n}\,d\sigma\) by normalization, are given by

$$\displaystyle{\mathbf{s}^{1,-1} = \left [\begin{array}{*{10}c} -1\\ 0 \\ 0\end{array} \right ],\quad \mathbf{s}^{1,0} = \left [\begin{array}{*{10}c} 0\\ 0 \\ 1 \end{array} \right ],\quad \mathbf{s}^{1,1} = \left [\begin{array}{*{10}c} 0\\ -1 \\ 0\end{array} \right ].}$$

The second-order tensors S l, m, l = 0, 2, \(m = -l,\ldots,l\), which are obtained from \(\int _{S^{2}}S^{l,m}(\theta,\phi )\mathbf{n}^{\otimes 2}\,d\sigma\) by normalization, are given by

$$\displaystyle{\mathbf{S}^{0,0} = \frac{1} {\sqrt{3}}\left [\begin{array}{*{10}c} 1&0&0\\ 0 &1 &0 \\ 0&0&1 \end{array} \right ],\quad \mathbf{S}^{2,-2} = \frac{1} {\sqrt{2}}\left [\begin{array}{*{10}c} 1& 0 &0\\ 0 &-1 &0 \\ 0& 0 &0 \end{array} \right ],\quad \mathbf{S}^{2,-1} = \frac{1} {\sqrt{2}}\left [\begin{array}{*{10}c} 0 &0&-1\\ 0 &0 & 0 \\ -1&0& 0 \end{array} \right ],}$$
$$\displaystyle{\mathbf{S}^{2,0} = \frac{1} {\sqrt{6}}\left [\begin{array}{*{10}c} -1& 0 &0\\ 0 &-1 &0 \\ 0 & 0 &2 \end{array} \right ],\quad \mathbf{S}^{2,1} = \frac{1} {\sqrt{2}}\left [\begin{array}{*{10}c} 0& 0 & 0\\ 0 & 0 &-1 \\ 0&-1& 0 \end{array} \right ],\quad \mathbf{S}^{2,2} = \frac{1} {\sqrt{2}}\left [\begin{array}{*{10}c} 0&1&0\\ 1 &0 &0 \\ 0&0&0 \end{array} \right ].}$$

Note that S l, m are traceless except for S 0, 0 which has unit trace. Furthermore, the set \(\{\mathbf{S}^{l,m},\ l = 0,2,\ m = -l,\ldots,l\}\) forms an orthonormal basis of the space of symmetric second-order tensors.

The third-order tensors S l, m, l = 1, 3, \(m = -l,\ldots,l\), which are obtained from \(\int _{S^{2}}S^{l,m}(\theta,\phi )\mathbf{n}^{\otimes 3}\,d\sigma\) by normalization, are given by

$$\displaystyle{\mathsf{S}^{1,-1} = \frac{1} {\sqrt{15}}\left [\begin{array}{*{10}c} -3&-1&-1&0& 0 & 0 \\ 0 & 0 & 0 &0& 0 &-\sqrt{2} \\ 0 & 0 & 0 &0&-\sqrt{2}& 0 \end{array} \right ],\quad \mathsf{S}^{1,0} = \frac{1} {\sqrt{15}}\left [\begin{array}{*{10}c} 0&0&0& 0 &\sqrt{2}&0 \\ 0&0&0&\sqrt{2}& 0 &0 \\ 1&1&3& 0 & 0 &0 \end{array} \right ],\quad \mathsf{S}^{1,1} = \frac{1} {\sqrt{15}}\left [\begin{array}{*{10}c} 0 & 0 & 0 & 0 &0&-\sqrt{2} \\ -1&-3&-1& 0 &0& 0 \\ 0 & 0 & 0 &-\sqrt{2}&0& 0 \end{array} \right ],}$$
$$\displaystyle{\mathsf{S}^{3,-3} = \frac{1} {2}\left [\begin{array}{*{10}c} -1&1&0&0&0& 0 \\ 0 &0&0&0&0&\sqrt{2} \\ 0 &0&0&0&0& 0 \end{array} \right ],\quad \mathsf{S}^{3,-2} = \frac{1} {\sqrt{6}}\left [\begin{array}{*{10}c} 0& 0 &0& 0 &\sqrt{2}&0 \\ 0& 0 &0&-\sqrt{2}& 0 &0 \\ 1&-1&0& 0 & 0 &0 \end{array} \right ],\quad \mathsf{S}^{3,-1} = \frac{1} {2\sqrt{15}}\left [\begin{array}{*{10}c} 3&3&-4&0& 0 & 0 \\ 0&0& 0 &0& 0 &\sqrt{2} \\ 0&0& 0 &0&-4\sqrt{2}& 0 \end{array} \right ],}$$
$$\displaystyle{\mathsf{S}^{3,0} = \frac{1} {\sqrt{10}}\left [\begin{array}{*{10}c} 0 & 0 &0& 0 &-\sqrt{2}&0 \\ 0 & 0 &0&-\sqrt{2}& 0 &0 \\ -1&-1&2& 0 & 0 &0 \end{array} \right ],\quad \mathsf{S}^{3,1} = \frac{1} {2\sqrt{15}}\left [\begin{array}{*{10}c} 0&0& 0 & 0 &0&\sqrt{2} \\ 1&1&-4& 0 &0& 0 \\ 0&0& 0 &-4\sqrt{2}&0& 0 \end{array} \right ],\quad \mathsf{S}^{3,2} = \frac{1} {\sqrt{6}}\left [\begin{array}{*{10}c} 0&0&0&\sqrt{2}& 0 & 0 \\ 0&0&0& 0 &\sqrt{2}& 0 \\ 0&0&0& 0 & 0 &\sqrt{2} \end{array} \right ],}$$
$$\displaystyle{\mathsf{S}^{3,3} = \frac{1} {2}\left [\begin{array}{*{10}c} 0 &0&0&0&0&-\sqrt{2} \\ -1&1&0&0&0& 0\\ 0 &0 &0 &0 &0 & 0 \end{array} \right ].}$$

We remark that the set \(\{\mathsf{S}^{l,m},\ l = 1,3,\ m = -l,\ldots,l\}\) forms an orthonormal basis of the space of totally symmetric third-order tensors.

The fourth-order tensors \(\mathbb{S}^{l,m}\), l = 0, 2, 4, \(m = -l,\ldots,l\), which are obtained from \(\int _{S^{2}}S^{l,m}(\theta,\phi )\mathbf{n}^{\otimes 4}\,d\sigma\) by normalization, are given by

$$\displaystyle{\mathbb{S}^{0,0} = \frac{1} {3\sqrt{5}}\left [\begin{array}{*{10}c} 3&1&1&0&0&0\\ 1 &3 &1 &0 &0 &0 \\ 1&1&3&0&0&0\\ 0 &0 &0 &2 &0 &0 \\ 0&0&0&0&2&0\\ 0 &0 &0 &0 &0 &2 \end{array} \right ],\quad \mathbb{S}^{2,-2} = \frac{1} {2\sqrt{21}}\left [\begin{array}{*{10}c} 6& 0 & 1 & 0 &0&0\\ 0 &-6 &-1 & 0 &0 &0 \\ 1&-1& 0 & 0 &0&0\\ 0 & 0 & 0 &-2 &0 &0 \\ 0& 0 & 0 & 0 &2&0\\ 0 & 0 & 0 & 0 &0 &0 \end{array} \right ],\quad \mathbb{S}^{2,-1} = \frac{1} {2\sqrt{21}}\left [\begin{array}{*{10}c} 0 & 0 & 0 & 0 &-3\,\sqrt{2}& 0 \\ 0 & 0 & 0 & 0 & -\sqrt{2} & 0 \\ 0 & 0 & 0 & 0 &-3\,\sqrt{2}& 0 \\ 0 & 0 & 0 & 0 & 0 &-2 \\ -3\,\sqrt{2}&-\sqrt{2}&-3\,\sqrt{2}& 0 & 0 & 0 \\ 0 & 0 & 0 &-2& 0 & 0 \end{array} \right ],}$$
$$\displaystyle{\mathbb{S}^{2,0} = \frac{1} {2\sqrt{63}}\left [\begin{array}{*{10}c} -6&-2& 1 &0&0& 0\\ -2 &-6 & 1 &0 &0 & 0 \\ 1 & 1 &12&0&0& 0\\ 0 & 0 & 0 &2 &0 & 0 \\ 0 & 0 & 0 &0&2& 0\\ 0 & 0 & 0 &0 &0 &-4 \end{array} \right ],\quad \mathbb{S}^{2,1} = \frac{1} {2\sqrt{21}}\left [\begin{array}{*{10}c} 0 & 0 & 0 & -\sqrt{2} & 0 & 0 \\ 0 & 0 & 0 &-3\,\sqrt{2}& 0 & 0 \\ 0 & 0 & 0 &-3\,\sqrt{2}& 0 & 0 \\ -\sqrt{2}&-3\,\sqrt{2}&-3\,\sqrt{2}& 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 &-2\\ 0 & 0 & 0 & 0 &-2 & 0 \end{array} \right ],\quad \mathbb{S}^{2,2} = \frac{1} {2\sqrt{21}}\left [\begin{array}{*{10}c} 0 & 0 & 0 &0&0&3\,\sqrt{2} \\ 0 & 0 & 0 &0&0&3\,\sqrt{2} \\ 0 & 0 & 0 &0&0& \sqrt{2} \\ 0 & 0 & 0 &0&2& 0\\ 0 & 0 & 0 &2 &0 & 0 \\ 3\,\sqrt{2}&3\,\sqrt{2}&\sqrt{2}&0&0& 0 \end{array} \right ],}$$
$$\displaystyle{\mathbb{S}^{4,-4} = \frac{1} {2\sqrt{2}}\left [\begin{array}{*{10}c} 1 &-1&0&0&0& 0\\ -1 & 1 &0 &0 &0 & 0 \\ 0 & 0 &0&0&0& 0\\ 0 & 0 &0 &0 &0 & 0 \\ 0 & 0 &0&0&0& 0\\ 0 & 0 &0 &0 &0 &-2 \end{array} \right ],\quad \mathbb{S}^{4,-3} = \frac{1} {4}\left [\begin{array}{*{10}c} 0 & 0 &0&0&-\sqrt{2}&0 \\ 0 & 0 &0&0& \sqrt{2} &0 \\ 0 & 0 &0&0& 0 &0\\ 0 & 0 &0 &0 & 0 &2 \\ -\sqrt{2}&\sqrt{2}&0&0& 0 &0 \\ 0 & 0 &0&2& 0 &0 \end{array} \right ],\quad \mathbb{S}^{4,-2} = \frac{1} {\sqrt{14}}\left [\begin{array}{*{10}c} -1& 0 & 1 & 0 &0&0\\ 0 & 1 &-1 & 0 &0 &0 \\ 1 &-1& 0 & 0 &0&0\\ 0 & 0 & 0 &-2 &0 &0 \\ 0 & 0 & 0 & 0 &2&0\\ 0 & 0\! & 0 & 0 &0 &0 \end{array} \right ],}$$
$$\displaystyle{\mathbb{S}^{4,-1} = \frac{1} {\sqrt{28}}\left [\begin{array}{*{10}c} 0 & 0 & 0 &0& 3\sqrt{2} &0 \\ 0 & 0 & 0 &0& \sqrt{2} &0 \\ 0 & 0 & 0 &0&-4\sqrt{2}&0 \\ 0 & 0 & 0 &0& 0 &2 \\ 3\sqrt{2}&\sqrt{2}&-4\sqrt{2}&0& 0 &0 \\ 0 & 0 & 0 &2& 0 &0 \end{array} \right ],\quad \mathbb{S}^{4,0} = \frac{1} {2\sqrt{70}}\left [\begin{array}{*{10}c} 3 & 1 &-4& 0 & 0 &0\\ 1 & 3 &-4 & 0 & 0 &0 \\ -4&-4& 8 & 0 & 0 &0\\ 0 & 0 & 0 &-8 & 0 &0 \\ 0 & 0 & 0 & 0 &-8&0\\ 0 & 0 & 0 & 0 & 0 &2 \end{array} \right ],\quad \mathbb{S}^{4,1} = \frac{1} {2\sqrt{28}}\left [\begin{array}{*{10}c} 0 & 0 & 0 & \sqrt{2} &0&0 \\ 0 & 0 & 0 & 3\sqrt{2} &0&0 \\ 0 & 0 & 0 &-4\sqrt{2}&0&0 \\ \sqrt{2}&3\sqrt{2}&-4\sqrt{2}& 0 &0&0 \\ 0 & 0 & 0 & 0 &0&2\\ 0 & 0 & 0 & 0 &2 &0 \end{array} \right ],}$$
$$\displaystyle{\mathbb{S}^{4,2} = \frac{1} {2\sqrt{14}}\left [\begin{array}{*{10}c} 0 & 0 & 0 &0&0&-\sqrt{2} \\ 0 & 0 & 0 &0&0&-\sqrt{2} \\ 0 & 0 & 0 &0&0& 2\sqrt{2} \\ 0 & 0 & 0 &0&4& 0\\ 0 & 0 & 0 &4 &0 & 0 \\ -\sqrt{2}&-\sqrt{2}&2\sqrt{2}&0&0& 0 \end{array} \right ],\quad \mathbb{S}^{4,3} = \frac{1} {4}\left [\begin{array}{*{10}c} 0 & 0 &0&-\sqrt{2}& 0 & 0 \\ 0 & 0 &0& \sqrt{2} & 0 & 0 \\ 0 & 0 &0& 0 & 0 & 0 \\ -\sqrt{2}&\sqrt{2}&0& 0 & 0 & 0 \\ 0 & 0 &0& 0 & 0 &-2\\ 0 & 0 &0 & 0 &-2 & 0 \end{array} \right ],\quad \mathbb{S}^{4,4} = \frac{1} {2\sqrt{2}}\left [\begin{array}{*{10}c} 0 & 0 &0&0&0& \sqrt{2} \\ 0 & 0 &0&0&0&-\sqrt{2} \\ 0 & 0 &0&0&0& 0\\ 0 & 0 &0 &0 &0 & 0 \\ 0 & 0 &0&0&0& 0 \\ \sqrt{2}&-\sqrt{2}&0&0&0& 0 \end{array} \right ].}$$

It should be noted that \(\mathbb{S}^{l,m}\) are traceless except for \(\mathbb{S}^{0,0}\) which has unit trace. The set \(\{\mathbb{S}^{l,m},\ l = 0,2,4,\ m = -l,\ldots,l\}\) forms an orthonormal basis of the space of totally symmetric fourth-order tensors.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Moakher, M., Basser, P.J. (2015). Fiber Orientation Distribution Functions and Orientation Tensors for Different Material Symmetries. In: Hotz, I., Schultz, T. (eds) Visualization and Processing of Higher Order Descriptors for Multi-Valued Data. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-15090-1_3

Download citation

Publish with us

Policies and ethics