Skip to main content

High-Concentration Optics for Photovoltaic Applications

  • Chapter
  • First Online:
High Concentrator Photovoltaics

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The concept of a high-concentration optical system is introduced detailing the various design types and focusing only on those aimed at photovoltaic (PV) applications. This will include point focus, line focus, imaging, nonimaging, and the classical cassegrain set-up. The theory of high-concentration optics is explained in terms of idealised concepts and maximum limits for each concentrator type and combination. The optical system is broken down into the different stages and materials possible in a high-concentration configuration. The physics of reflective and refractive optics are described, and their associated errors, advantages and a brief overview of past milestones, and recent research trends in the area of high-concentration PVs are presented. Current primary and secondary optics are geometrically explained covering Fresnel, parabolic, heliostat, compound parabolic, hyperboloid, v-trough, and dome-shaped optics. This chapter also covers examples of new secondary optics, such as the three-dimensional crossed-compound parabolic concentrator and the square elliptical hyperboloid concentrator. The aim of this chapter is to provide the basic optical behaviour of high-concentration designs aimed at PV applications considering their geometry, materials, and reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chemisana D, Mallick T (2014) Building integrated concentrated solar systems. In: Enteria N, Akbarzadeh A (eds) Solar energy sciences and engineering applications, 1st edn. CRC Press, pp 545–788

    Google Scholar 

  2. Winston R, Miñano JC, Benitez P (2005) Nonimaging optics. Elsevier, London

    Google Scholar 

  3. Murphree QC (2001) A point focusing double parabolic trough concentrator. Solar Energy 70(2):85–94

    Google Scholar 

  4. Xie WT, Dai YJ, Wang RZ, Sumathy K (2011) Concentrated solar energy applications using fresnel lenses: a review. Renew Sustain Energy Rev 15(6):2588–2606

    Google Scholar 

  5. Luque A, Andreev VM (2007) Concentrator photovoltaics. Springer, Berlin

    Google Scholar 

  6. Chaves J (2008) Introduction to nonimaging optics. CRC Press, Boca Raton

    Google Scholar 

  7. Goldstein A, Gordon JM (2010) Double-tailored nonimaging reflector optics for maximum-performance solar concentration. J Opt Soc Am A Opt Image Sci Vis 27(9):1977–1984

    Google Scholar 

  8. Fraas LM (2014) Low-cost solar electric power. Springer International Publishing, Cham

    Google Scholar 

  9. Sangster AJ (2014) Electromagnetic foundations of solar radiation collection. Green energy and technology. Springer International Publishing, Cham

    Google Scholar 

  10. Chen YT, Ho TH (2013) Design method of non-imaging secondary (NIS) for CPV usage. Solar Energy 93:32–42

    Google Scholar 

  11. Nilsson J, Leutz R, Karlsson B (2007) Micro-structured reflector surfaces for a stationary asymmetric parabolic solar concentrator. Solar Energy Mater Solar Cells 91(6):525–533

    Google Scholar 

  12. Winston R, Miñano JC, Bentez P, Shatz N, Bortz JC (2005) Nonimaging optics. Elsevier, Melbourne

    Google Scholar 

  13. Dreger M, Wiesenfarth M, Kisser A, Schmid T, Bett AW (2014) Development and investigation of a CPV module with cassegrain mirror optics. In: CPV-10

    Google Scholar 

  14. Goldstein A, Gordon JM (2011) Tailored solar optics for maximal optical tolerance and concentration. Solar Energy Mater Solar Cells 95(2):624–629

    Google Scholar 

  15. Julio Chaves. Introduction to Nonimaging Optics (Google eBook). CRC Press, 2008

    Google Scholar 

  16. Goldstein A, Gordon JM (2011) Tailored solar optics for maximal optical tolerance and concentration. Solar Energy Mater Solar Cells 95(2):624–629

    Google Scholar 

  17. Akisawa A, Hiramatsu M, Ozaki K (2012) Design of dome-shaped non-imaging fresnel lenses taking chromatic aberration into account. Solar Energy 86(3):877–885

    Google Scholar 

  18. Yamdt MD, Cook JPD, Hinzer K, Schriemer H (2014) Optical channel variability and acceptance angle in CPV modules studied by active I-V response. In: CPV-10

    Google Scholar 

  19. Jagoo Z (2013) Tracking solar concentrators. Springer, The Netherlands

    Google Scholar 

  20. Victoria M, Domnguez C, Antón I, Sala G (2009) Comparative analysis of different secondary optical elements for aspheric primary lenses. Opt Express 17(8):6487–6492

    Google Scholar 

  21. Norton B (2014) Harnessing solar heat, volume 18 of lecture notes in energy. Springer, Netherlands

    Google Scholar 

  22. Wilson RN (2004) Reflecting telescope optics I. Springer, Berlin

    Google Scholar 

  23. Miller DC, Kurtz SR (2011) Durability of fresnel lenses: a review specific to the concentrating photovoltaic application. Solar Energy Mater Solar Cells 95(8):2037–2068

    Google Scholar 

  24. Leutz R, Suzuki A (2001) Nonimaging fresnel lenses: design and performance of solar concentrators. Springer, New York

    Google Scholar 

  25. Yeh N (2010) Analysis of spectrum distribution and optical losses under fresnel lenses. Renew Sustain Energy Rev 14(9):2926–2935

    Google Scholar 

  26. Luque A, Hegedus S (2003) Handbook of photovoltaic science. Wiley, England

    Google Scholar 

  27. Silvi C (2009) The pioneering work on linear fresnel reflector concentrators (LFC’s) in Italy. In: Solarpaces conference. Italian Group for the History of Solar Energy (GSES)

    Google Scholar 

  28. Zanganeh G, Bader R, Pedretti A, Pedretti M, Steinfeld A (2012) A solar dish concentrator based on ellipsoidal polyester membrane facets. Solar Energy 86(1):40–47

    Google Scholar 

  29. Tromholt T, Katz EA, Hirsch B, Vossier A, Krebs FC (2010) Effects of concentrated sunlight on organic photovoltaics. Appl Phys Lett 96(7):073501

    Google Scholar 

  30. Languy F, Fleury K, Lenaerts C, Loicq J, Regaert D, Thibert T, Habraken S (2011) Flat fresnel doublets made of PMMA and PC: combining low cost production and very high concentration ratio for CPV. Opt Express 19(3):A280–94

    Google Scholar 

  31. Languy F, Habraken S (2013) Nonimaging achromatic shaped fresnel lenses for ultrahigh solar concentration. Opt Lett 38(10):1730–1732

    Google Scholar 

  32. González JC (2009) Design and analysis of a curved cylindrical fresnel lens that produces high irradiance uniformity on the solar cell. Appl Opt 48(11):2127–2132

    Google Scholar 

  33. Leutz R, Suzuki A, Akisawa A, Kashiwagi T (1999) Design of nonimaging fresnel lens for solar concentrators. Solar Energy 65:379

    Google Scholar 

  34. Kritchman EM, Friesem AA, Yekutieli G (1979) Highly concentrating fresnel lenses. Appl opt 18:2688–2695

    Google Scholar 

  35. Zhuang Z, Yu F (2014) Optimization design of hybrid fresnel-based concentrator for generating uniformity irradiance with the broad solar spectrum. Opt Laser Technol 60:27–33

    Google Scholar 

  36. Canavarro D, Chaves J, Collares-Pereira M (2013) New second-stage concentrators (XX SMS) for parabolic primaries; comparison with conventional parabolic trough concentrators. Solar Energy 92:98–105

    Google Scholar 

  37. Palavras I, Bakos GC (2006) Development of a low-cost dish solar concentrator and its application in zeolite desorption. Renew Energy 31(15):2422–2431

    Google Scholar 

  38. Baig H, Heasman KC, Mallick TK (2012) Non-uniform illumination in concentrating solar cells. Renew Sustain Energy Rev 16(8)5890–5909

    Google Scholar 

  39. Shanks K, Sarmah N, Mallick TK (2013) The design and optical optimisation of a two stage reflecting high concentrating photovoltaic module using ray trace modelling. In: PVSAT-9

    Google Scholar 

  40. Abbas R, Muñoz Antón J, Valdés M, Martnez-Val JM (2013) High concentration linear Fresnel reflectors. Energy Convers Manage 72:60–68

    Google Scholar 

  41. Morin G, Dersch J, Platzer W, Eck M, Häberle A (2012) Comparison of linear fresnel and parabolic trough collector power plants. Solar Energy 86(1)1–12

    Google Scholar 

  42. Jaus J, Peharz G, Gombert A, Pablo J, Rodriguez F, Dimroth F, Eltermann F, Wolf O, Passig M, Siefer G, Hakenjos A, Riesen S, Bett AW (2009) Development of flatcon modules using secondary optics. IEEE, pp 1931–1936

    Google Scholar 

  43. Abu-Bakar SH, Muhammad-Sukki F, Ramirez-Iniguez R, Mallick TK, Munir AB, Yasin SHM, Rahim RA (2014) Rotationally asymmetrical compound parabolic concentrator for concentrating photovoltaic applications. Appl Energy 136:363–372

    Google Scholar 

  44. Sellami N, Mallick TK (2013) Optical efficiency study of PV crossed compound parabolic concentrator. Appl Energy 102:868–876

    Google Scholar 

  45. Guiqiang L, Gang P, Yuehong S, Jie J, Riffat SB (2013) Experiment and simulation study on the flux distribution of lens-walled compound parabolic concentrator compared with mirror compound parabolic concentrator. Energy 58:398–403

    Google Scholar 

  46. Andreev V, Ionova E (2003) Concentrator PV modules of “all-glass” design with modified structure. In: Proceedings of 3rd world conference on photovoltaic energy conversion, 2003

    Google Scholar 

  47. Tang R, Liu X (2011) Optical performance and design optimization of V-trough concentrators for photovoltaic applications. Solar Energy 85(9):2154–2166

    Google Scholar 

  48. Sellami S, Mallick TK (2013) Optical characterisation and optimisation of a static window integrated concentrating photovoltaic system. Solar Energy 91:273–282

    Google Scholar 

  49. Leutz R, Fu L, Annen HP (2009) Stress in large-area optics for solar concentrators. In Dhere NG, Wohlgemuth JH, Ton DT (eds) SPIE Solar Energy + Technology. International society for optics and photonics, pp 741206–741206–7

    Google Scholar 

  50. Egger JR (1979) Manufacturing fresnel lens master tooling for solar photovoltiac concentrators

    Google Scholar 

  51. Lorenzo E, Sala G (1979) Hybrid silicone-glass Fresnel lens as concentrator for photovoltaic applications. In: Proceedings of the silver jubilee congress 1:536–539

    Google Scholar 

  52. Miller DC, Kempe MD, Kennedy CE, Kurtz SR (2009) Analysis of transmitted optical spectrum enabling accelerated testing of CPV designs preprint. In: SPIE

    Google Scholar 

  53. John E Greivenkamp. Field Guide to Geometrical Optics. 2004

    Google Scholar 

  54. Kasarova SN, Sultanova NG, Ivanov CD, Nikolov ID (2007) Analysis of the dispersion of optical plastic materials. Opt Mater 29(11):1481–1490

    Google Scholar 

  55. Andrady A (1997) Wavelength sensitivity in polymer photodegradation. Polymer 128:47–94

    Google Scholar 

  56. Andrady AL, Hamid SH, Hu X, Torikai A (1998) Effects of increased solar ultraviolet radiation on materials. J Photochem Photobiol B Biol 46:96–103

    Google Scholar 

  57. Zhou G, He J, Ligang X (2013) Antifogging antireflective coatings on fresnel lenses by integrating solid and mesoporous silica nanoparticles. Microporous Mesoporous Mater 176:41–47

    Google Scholar 

  58. Rabl A (1976) Comparison of solar concentrators. Solar Energy 18(2):93–111

    Google Scholar 

  59. Bader R, Haueter P, Pedretti A, Steinfeld A (2009) Optical design of a novel two-stage solar trough concentrator based on pneumatic polymeric structures. J Solar Energy Eng 131(3):031007

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katie Shanks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shanks, K., Senthilarasu, S., Mallick, T.K. (2015). High-Concentration Optics for Photovoltaic Applications. In: Pérez-Higueras, P., Fernández, E. (eds) High Concentrator Photovoltaics. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-15039-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15039-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15038-3

  • Online ISBN: 978-3-319-15039-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics