Skip to main content

Ultrafast Optical Techniques for Communication Networks and Signal Processing

  • Chapter
  • First Online:
All-Optical Signal Processing

Abstract

Wireless communications, for data services in particular, have witnessed an exponential growth, and wireless spectrum shortages necessitate increasingly sophisticated methods to use spectrum efficiently. The backhaul of nearly all wireless data networks is fiber-optic. Analog optical signal processing techniques, or microwave photonics, provides an ideal platform for processing wireless information before it is transported to data aggregation centers by fibers. It is in this context that we present recent advances in optical signal processing techniques for wireless radio frequency (RF) signals. Specifically, this chapter is devoted to the discussion of photonic architectures for wideband analog signal processing, including RF beamforming , co-channel interference cancellation, and physical layer security . Photonics offers the advantages not only of broadband operation, but reduced size, weight, and power, in addition to low transmission loss, rapid reconfigurability, and immunity to electromagnetic interference .

B.J. Shastri and J. Chang—equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mobile broadband explosion, White Paper, Rysavy Research/4G Americas, Aug 2012

    Google Scholar 

  2. H. Bauer, F. Grawert, S. Schink. Semiconductors for wireless communications: growth engine of the industry, McKinsey & Company on Semiconductors, Technical Report (2012)

    Google Scholar 

  3. R.A. Monzingo, R.L. Haupt, T.W. Miller, Introduction to Adaptive Antennas (SciTech Publishing, Raleigh, 2011)

    Google Scholar 

  4. J. Yao, Microwave photonics. J. Lightwave Technol. 27(3), 314–335 (2009)

    Article  ADS  Google Scholar 

  5. J. Capmany, B. Ortega, D. Pastor, A tutorial on microwave photonic filters. J. Lightwave Technol. 24(1), 201–229 (2006)

    Article  ADS  Google Scholar 

  6. J. Chang, M.P. Fok, J. Meister, P.R. Prucnal, A single source microwave photonic filter using a novel single-mode fiber to multimode fiber coupling technique. Opt. Express 21(5), 5585–5593 (2013)

    Article  ADS  Google Scholar 

  7. J. Chang, Y. Deng, M.P. Fok, J. Meister, P.R. Prucnal, A photonic microwave FIR filter using a spectrally sliced supercontinuum source. Appl. Opt. 51(19), 4265–4268 (2012)

    Article  Google Scholar 

  8. J. Chang, P.R. Prucnal, A novel analog photonic method for broadband multipath interference cancellation. IEEE Microwave Wirel. Compon. Lett. 23(7), 377–379 (2013)

    Article  Google Scholar 

  9. R. Haupt, Antenna Arrays: A Computational Approach (Wiley, Hoboken, 2010)

    Book  Google Scholar 

  10. B. Widrow, P.E. Mantey, L.J. Griffiths, B.B. Goode, Adaptive antenna systems. Proc. IEEE 55, 2143–2159 (1967)

    Article  Google Scholar 

  11. B. Widrow, S.D. Stearns, Adaptive Signal Processing (Prentice-Hall, Englewood Cliffs, 1985)

    MATH  Google Scholar 

  12. L.V. Blake, M.W. Long, Antennas: Fundamentals, Design, Measurement (SciTech Publishing, Daryaganj, 2009)

    Google Scholar 

  13. S.O. Haykin, Adaptive Filter Theory (Prentice-Hall, Englewood Cliffs, 2002)

    Google Scholar 

  14. D.B. Hunter, R.A. Minasian, Microwave optical filters using in-fiber Bragg grating arrays. IEEE Microwave Guided Waveguide Lett. 6(2), 103–105 (1996)

    Article  Google Scholar 

  15. X. Yi, R.A. Minasian, New spectrum-sliced microwave photonic filter for high- frequency signal processing. IEEE Photonics Technol. Lett. 21(4), 230–232 (2009)

    Article  ADS  Google Scholar 

  16. T. Chen, X. Yi, T. Huang, R.A. Minasian, Spectrum sliced microwave photonic signal processor with tunablity and reconfigurablity, in Proceeding of the OptoElectronics and Communications Conference (OECC), pp. 1–2, July 2009

    Google Scholar 

  17. J. Capmany, J. Mora, D. Pastor, B. Ortega, High-quality online-reconfigurable microwave photonic transversal filter with positive and negative coefficients. IEEE Photonic Technol. Lett. 17(12), 2730–2732 (2005)

    Article  ADS  Google Scholar 

  18. X. Yi, T.X.H. Huang, R.A. Minasian, Microwave photonic filter with tunability, reconfigurability and bipolar taps. Electron. Lett. 45(16), 840–841 (2009)

    Article  Google Scholar 

  19. M.D. Manzanedo, J. Mora, J. Capmany, Continuously tunable microwave photonic filter with negative coefficients using cross-phase modulation in an SOA-MZ interferometer. IEEE Photonics Technol. Lett. 20(7), 526–528 (2008)

    Article  ADS  Google Scholar 

  20. E.H.W. Chan, R.A. Minasian, Coherence-free equivalent negative tap microwave photonic notch filter based on delayed self-wavelength conversion. IEEE Trans. Microw. Theory Tech. 5(11), 3199–3205 (2010)

    Article  Google Scholar 

  21. J. Mora, A. Martinez, M.D. Manzanedo, J. Capmany, B. Ortega, D. Pastor, Microwave photonic filters with arbitrary positive and negative coefficients using multiple phase inversion in SOA based XGM wavelength converter. Electron. Lett. 41(16), 53–54 (2005)

    Article  Google Scholar 

  22. X. Yi, R.A. Minasian, Novel multitap, flat-top microwave photonic filter based on sinusoidal group delay gratings. J. Lightwave Technol. 26(15), 2578–2583 (2008)

    Article  ADS  Google Scholar 

  23. C.-K. Oh, T.-Y. Kim, C.-S. Park, Reconfigurable photonic microwave band-pass filter with negative coefficients based on polarisation modulation. Electron. Lett. 43(11), 639–641 (2007)

    Article  Google Scholar 

  24. S. Mansoori, A. Mitchell, K. Ghorbani, Photonic reconfigurable microwave filter with negative coefficients. Electron. Lett. 40(9), 541–543 (2004)

    Article  Google Scholar 

  25. B. Vidal, J.L. Corral, and J. Marti, Multi-tap all-optical microwave filter with negative coefficients based on multiple optical carriers and dispersive media, in Proceeding of the International Topical Meeting on Microwave Photonics (MWP), pp. 201–204, Oct 2005

    Google Scholar 

  26. D. Pastor, J. Capmany, B. Ortega, A. Martinez, L. Pierno, M. Varasi, Reconfigurable RF photonic filter with negative coefficients and flat-top resonances using phase inversion in a newly designed 2 × 1 integrated Mach-Zehnder modulator. IEEE Photonics Technol. Lett. 16(9), 2126–2128 (2004)

    Article  ADS  Google Scholar 

  27. D.B. Hunter, Incoherent bipolar tap microwave photonic filter based on balanced bridge electro-optic modulator. Electron. Lett. 40(12), 856–858 (2004)

    Article  Google Scholar 

  28. L.A. Bui, K.S. Dayaratne, A. Mitchell, Discrete time microwave photonic transversal filter, in Proceeding of the International Topical Meeting on Microwave Photonics (MWP), pp. 1–3, Oct 2009

    Google Scholar 

  29. X. Yi, R.A. Minasian, Dispersion induced RF distortion of spectrum-sliced microwave-photonic filters. IEEE Trans. Microw. Theory Tech. 54(2), 880–886 (2006)

    Article  ADS  Google Scholar 

  30. J. Mora, S. Sales, M.D. Manzanedo, R. Garcia-Olcina, J. Capmany, B. Ortega, D. Pastor, Continuous tuning of photonic transversal filter based on the modification of tapped weights. IEEE Photonic Technol. Lett. 18(15), 1594–1596 (2006)

    Article  ADS  Google Scholar 

  31. J. Capmany, D. Pastor, B. Ortega, New and flexible fiber-optic delay-line filters using chirped Bragg gratings and laser arrays. IEEE Trans. Microw. Theory Tech. 47(7), 1321–1326 (1999)

    Article  ADS  Google Scholar 

  32. W. Liu and S. Weiss. Wideband Beamforming: Concepts and Techniques (Wiley, Chichester, 2010)

    Google Scholar 

  33. B.D. Van Veen, K.M. Buckley, Beamforming: a versatile approach to spatial filtering. IEEE ASSP Mag. 5(2), 4–24 (1988)

    Article  ADS  Google Scholar 

  34. H. Zmuda, R.A. Soref, P. Payson, S. Johns, E.N. Toughlian, Photonic beamformer for phased array antennas using a fiber grating prism, IEEE Photonics Technol. Lett. 9(2), 241–243 (Feb 1997)

    Google Scholar 

  35. M.Y. Frankel, P.J. Matthews, R.D. Esman, Two-dimensional fiber-optic control of a true time-steered array transmitter. IEEE Trans. Microw. Theory Tech. 44(12), 2696–2702 (1996)

    Article  ADS  Google Scholar 

  36. L. Yaron, R. Rotman, S. Zach, M. Tur, Photonic beamformer receiver with multiple beam capabilities. IEEE Photonics Technol. Lett. 22(23), 1723–1725 (2010)

    Article  ADS  Google Scholar 

  37. L. Jofre, C. Stoltidou, S. Blanch, T. Mengual, B. Vidal, J. Marti, I. Mckenzie, J.M. del Cura, Optically beamformed wideband array performance. IEEE Trans. Antennas Propag. 56(6), 1594–1604 (2008)

    Article  ADS  Google Scholar 

  38. H. Subbaraman, M.Y. Chen, R.T. Chen, Simultaneous dual RF beam reception of an X-band phased array antenna utilizing highly dispersive photonic crystal fiber based true-time-delay, in Proceedings of the Asia Optical Fiber Communication and Optoelectronic Exposition and Conference (AOE), pp 1–3, 2008, paper SaJ2

    Google Scholar 

  39. W. Xue, J. Mork, Microwave photonic true time delay based on cross gain modulation in semiconductor optical amplifiers, in Proceeding of the OptoElectronics and Communications Conference (OECC), pp. 202–203, July 2010

    Google Scholar 

  40. M.A. Piqueras, G. Grosskopf, B. Vidal, J. Herrera, J.M. Martinez, P. Sanchis, V. Polo, J.L. Corral, A. Marceaux, J. Galiere, J. Lopez, A. Enard, J.-L. Valard, O. Parillaud, E. Estebe, N. Vodjdani, M.-S. Choi, J.H. den Besten, F.M. Soares, M.K. Smit, J. Marti, Optically beamformed beam-switched adaptive antennas for fixed and mobile broad-band wireless access networks. IEEE Trans. Microw. Theory Tech. 54(2), 887–899 (2006)

    Article  ADS  Google Scholar 

  41. Y. Liu, G. Burnham, G. Jin, J. Zhao, Wideband multi-beam photonics-based RF beamformer, in Proceedings of the IEEE International Symposium on Phased Array Systems and Technology (ARRAY), pp. 581–585, Oct 2010

    Google Scholar 

  42. B. Juswardy, F. Xiao, K.E. Alameh, Opto-VLSI-based RF beamformer for space division multiple access network, in Proceedings of the High-Capacity Optical Networks and Enabling Technologies (HONET), pp. 222–226, Dec 2010

    Google Scholar 

  43. H. Zmuda, E. N. Toughlian, Broadband nulling for conformal phased array antennas using photonic processing, in Proceedings of the International Topical Meeting on Microwave Photonics (MWP), pp. 17–19, Sept 2000

    Google Scholar 

  44. D. Marpaung, L. Zhuang, M. Burla, C. Roeloffzen, B. Noharet, Q. Wang, W.P. Beeker, A. Leinse, R. Heideman, Photonic integration and components development for a Ku-band phased array antenna system, in Proceedings of the International Topical Meeting on Microwave Photonics (MWP), pp. 458–461, Oct 2011

    Google Scholar 

  45. L. Zhuang, D. Marpaung, M. Burla, C. Roeloffzen, W. Beeker, A. Leinse, P. van Dijk, Low-loss and programmable integrated photonic beamformer for electronically-steered broadband phased array antennas, in Proceedings of the IEEE Photonics Conference (PHO), pp. 137–138, 2011

    Google Scholar 

  46. J. Chang, M.P. Fok, R.M. Corey, J. Meister, P.R. Prucnal, Highly scalable adaptive photonic beamformer using a single mode to multimode optical combiner. IEEE Microwave Wirel. Compon. Lett. 23(10), 563–565 (2013)

    Article  Google Scholar 

  47. M.P. Fok, Y. Deng, K. Kravtsov, P.R. Prucnal, Signal beating elimination using single-mode fiber to multimode fiber coupling. Opt. Lett. 36(23), 4578–4580 (2011)

    Article  ADS  Google Scholar 

  48. S. Lin, K.B. Ng, K.M. Luk, S.S.Wong, A. Poon, A 60 GHz digitally controlled RF beamforming array in 65 nm CMOS with off-chip antennas, in Proceedings of the Radio Frequency Integrated Circuits Symposium (RFIC), pp. 1–4, June 2011

    Google Scholar 

  49. D. Bojic, E. Sasaki, N. Cvijetic, T. Wang, J. Kuno, J. Lessmann, S. Schmid, H. Ishii, S. Nakamura, Advanced wireless and optical technologies for small-cell mobile backhaul with dynamic software-defined management. IEEE Commun. Mag. 51(9), 86–93 (2013)

    Article  Google Scholar 

  50. N. Cvijetic, A. Tanaka, Y.-K. Huang, M. Cvijetic, E. Ip, Y. Shao, T. Wang, 4-G mobile backhaul over OFDMA/TDMA-PON to 200 cell sites per fiber with 10 Gb/s upstream burst-mode operation enabling 1 ms transmission latency, in Proceedings of the Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2012, paper PDP5B.7

    Google Scholar 

  51. C. Liu, K. Sundaresan, M. Jiang, S. Rangarajan, G.-K. Chang, The case for re-configurable backhaul in cloud-ran based small cell networks, in Proceedings of the IEEE INFOCOM, pp. 1124–1132, 2013

    Google Scholar 

  52. B.J. Shastri, D.V. Plant, Scaling technologies for terabit fiber optic transmission systems, in Proceedings of the SPIE, vol. 7942, (San Francisco, CA, Feb 2011), paper 794206

    Google Scholar 

  53. B.J. Shastri, P.R. Prucnal, D.V. Plant, 20-GSample/s (10 GHz × 2 clocks) burst-mode CDR based on injection locking and space sampling for multiaccess networks. IEEE Photonics J. 4(5), 1783–1793 (2012)

    Article  Google Scholar 

  54. B.J. Shastri, D.V. Plant, Truly modular burst-mode CDR with instantaneous phase acquisition for multiaccess networks. IEEE Photonics Technol. Lett. 24(2), 134–136 (2012)

    Article  ADS  Google Scholar 

  55. B.J. Shastri, D.V. Plant, 5/10-Gb/s burst-mode clock and data recovery based on semiblind oversampling for PONs: theoretical and experimental. IEEE J. Sel. Top. Quantum Electron. 16(5), 1298–1320 (2010)

    Article  Google Scholar 

  56. B.J. Shastri, Y.B. M’Sallem, N. Zicha, L.A. Rusch, S. LaRochelle, D.V. Plant, Experimental study of burst-mode reception in a 1300 km deployed fiber link. J. Opt. Commun. Networking 2(1), 1–9 (2010)

    Article  Google Scholar 

  57. B.J. Shastri, Z.A. El-Sahn, M. Zeng, N. Kheder, L.A. Rusch, D.V. Plant, A standalone burst-mode receiver with clock and data recovery, clock phase alignment, and RS(255, 239) codes for SAC-OCDMA applications. IEEE Photonics Technol. Lett. 20(5), 363–365 (2008)

    Article  ADS  Google Scholar 

  58. Z.A. El-Sahn, B.J. Shastri, M. Zeng, N. Kheder, D.V. Plant, L.A. Rusch, Experimental demonstration of a SAC-OCDMA PON with burst-mode reception: local versus centralized sources. J. Lightwave Technol. 26(10), 1192–1203 (2008)

    Article  ADS  Google Scholar 

  59. B. Wu, B.J. Shastri, P.R. Prucnal, Secure communication in fiber-optic networks, in Emerging Trends in Information and Communication Technologies Security, ed. by B. Akhgar, H. Arabnia (Elsevier, Waltham, 2013), ch. 11, pp. 173–183

    Google Scholar 

  60. B. Wu, Z. Wang, Y. Tian, M.P. Fok, B.J. Shastri, D.R. Kanoff, P.R. Prucnal, Optical steganography based on amplified spontaneous emission noise. Opt. Express 21(2), 2065–2071 (2013)

    Article  ADS  Google Scholar 

  61. B. Wu, Z. Wang, B.J. Shastri, M.P. Chang, N.A. Frost, P.R. Prucnal, Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise. Opt. Express 22(1), 954–961 (2014)

    Article  ADS  Google Scholar 

  62. B. Wu, M.P. Chang, B.J. Shastri, Z. Wang, P.R. Prucnal, Analog noise protected optical encryption with two-dimensional key space. Opt. Express 22(12), 14568–14574 (2014)

    Article  ADS  Google Scholar 

  63. B. Wu, B.J. Shastri, P.R. Prucnal, System performance measurement and analysis of optical steganography based on amplifier noise. IEEE Photonics Technol. Lett. 26(19), 1920–1923 (2014)

    Article  ADS  Google Scholar 

  64. B. Wu, M.P. Chang, Z. Wang, B.J. Shastri, P.R. Prucnal, Optical encryption based on cancellation of analog noise, in Proceedings Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, June 2014, paper AW3P.5

    Google Scholar 

  65. B. Wu, Z. Wang, B.J. Shastri, Y. Tian, P.R. Prucnal, Phase mask encrypted optical steganography based on amplified spontaneous emission noise, in Proceedings of the IEEE Photonics Conference (IPC), Seattle, Sept 2013, paper MG3.3, pp. 137–138

    Google Scholar 

  66. B. Wu, Z. Wang, B.J. Shastri, Y. Tian, P.R. Prucnal, Two dimensional encrypted optical steganography based on amplified spontaneous emission noise, in Proceedings of the Conference on Lasers and Electro-Optics (CLEO), San Jose, June 2013, paper AF1H.5

    Google Scholar 

  67. A. N. Tait, M.A. Nahmias, Y. Tian, B.J. Shastri, P.R. Prucnal, Photonic neuromorphic signal processing and computing, in Nanophotonic Information Physics, ser. Nano-Optics and Nanophotonics, ed. by M. Naruse, Springer, Heidelberg, 2014, pp. 183–222. http://dx.doi.org/10.1007/978-3-642-40224-1_8

  68. B.J. Shastri, A.N. Tait, M.A. Nahmias, P.R. Prucnal, Photonic spike processing: ultrafast laser neurons and an integrated photonic network. IEEE Photonics Soc. Newsl. 28(3), 4–11 (2014)

    Google Scholar 

  69. M.A. Nahmias, B.J. Shastri, A.N. Tait, P.R. Prucnal, A leaky integrate-and-fire laser neuron for ultrafast cognitive computing, IEEE J. Sel. Top. Quantum Electron. 19(5), 1800212 (Sept–Oct 2013)

    Google Scholar 

  70. A.N. Tait, M.A. Nahmias, B.J. Shastri, P.R. Prucnal, Broadcast and weight: an integrated network for scalable photonic spike processing. J. Lightwave Technol. 32(21), 3427–3439 (2014)

    Article  ADS  Google Scholar 

  71. B.J. Shastri, M.A. Nahmias, A.N. Tait, P.R. Prucnal, Simulations of a graphene excitable laser for spike processing. Opt. Quant. Electron. 46(10), 1353–1358 (2014)

    Article  Google Scholar 

  72. A.N. Tait, B.J. Shastri, M.A. Nahmias, M.P. Fok, P.R. Prucnal, The DREAM: an integrated photonic thresholder. J. Lightwave Technol. 31(8), 1263–1272 (2013)

    Article  ADS  Google Scholar 

  73. A.N. Tait, M.A. Nahmias, B.J. Shastri, P.R. Prucnal, Broadcast-and-weight interconnects for integrated distributed processing systems, in Proceedings of the IEEE Optical Interconnects Conference (OI), Coronado Bay, CA, May 2014, paper WA3, pp. 108–109

    Google Scholar 

  74. B.J. Shastri, M.A. Nahmias, A.N. Tait, Y. Tian, B. Wu, P.R. Prucnal, Graphene excitable laser for photonic spike processing, IEEE Photonics Conf. (IPC), Sept 2013, pp. 1–2. http://dx.doi.org/10.1109/IPCon.2013.6656424

  75. M.A. Nahmias, A.N. Tait, B.J. Shastri, P.R. Prucnal, An evanescent hybrid silicon laser neuron, in Proceedings of the IEEE Photonics Conference (IPC), Seattle, WA, Sept 2013, paper ME3.4, pp. 93–94

    Google Scholar 

  76. B.J. Shastri, M.A. Nahmias, A.N. Tait, Y. Tian, M.P. Fok, M.P. Chang, B. Wu, P.R. Prucnal, Exploring excitability in graphene for spike processing networks, in Proceedings of the IEEE Numerical Simulation of Optoelectronic Devices (NUSOD), Vancouver, Canada, Aug 2013, paper TuC5, pp. 83–84

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul R. Prucnal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shastri, B.J. et al. (2015). Ultrafast Optical Techniques for Communication Networks and Signal Processing. In: Wabnitz, S., Eggleton, B. (eds) All-Optical Signal Processing. Springer Series in Optical Sciences, vol 194. Springer, Cham. https://doi.org/10.1007/978-3-319-14992-9_15

Download citation

Publish with us

Policies and ethics