Skip to main content

Life Before the Cell

  • Chapter
  • First Online:
Book cover Code Biology
  • 1302 Accesses

Abstract

Ever since the classic experiment by Stanley Miller (1953) it is known that many organic molecules can be formed spontaneously in a variety of environmental conditions. Organic molecules have been found, for example, in meteorites that arrived on Earth, and spectroscopy has revealed their presence in comets and in interstellar space. This tells us that organic matter is formed spontaneously whenever and wherever suitable conditions exist, and today we know that those conditions existed on Earth at a very early stage of its history.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ban N, Nissen P, Hansen J, Moore PB, Steitz TA (2000) The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289:905–920

    Article  CAS  PubMed  Google Scholar 

  • Barbieri M (1981) The ribotype theory on the origin of life. J Theor Biol 91:545–601

    Article  CAS  PubMed  Google Scholar 

  • Barbieri M (1985) The semantic theory of evolution. Harwood Academic Publishers, London/New York

    Google Scholar 

  • Barbieri M (2012) Codepoiesis – the deep logic of life. Biosemiotics 5(3):297–299

    Article  Google Scholar 

  • Burks AW (1970) Essays on cellular automata. University of Illinois Press, Urbana

    Google Scholar 

  • Busch H, Smetana K (1970) The nucleolus. Academic, New York/London

    Google Scholar 

  • Cech TR (1983) RNA splicing: three themes with variations. Cell 34:713–716

    Article  CAS  PubMed  Google Scholar 

  • Cech TR (1986) RNA as an enzyme. Sci Am 255:64–75

    Article  CAS  PubMed  Google Scholar 

  • Di Giulio M (2008) An extension of the coevolution theory of the origin of the genetic code. Biol Direct 3:1–37

    Article  Google Scholar 

  • Doolittle WF (1999) Phylogenetic classification and the universal tree. Science 284:2124–2129

    Article  CAS  PubMed  Google Scholar 

  • Eigen M (1971) Self-organization of matter and the evolution of biological macromolecules. Naturwissenschaften 58:465–523

    Article  CAS  PubMed  Google Scholar 

  • Eigen M, Schuster P (1977) The hypercycle: a principle of natural self-organization. Naturwissenschaften 64:541–565

    Article  CAS  PubMed  Google Scholar 

  • Fitch WM, Upper K (1987) The phylogeny of tRNA sequences provides evidence for ambiguity reduction in the origin of the genetic code. Cold Spring Harb Symp Quant Biol 52:759–767

    Article  CAS  PubMed  Google Scholar 

  • Fox GE (2010) Origin and evolution of the ribosome. Cold Spring Harb Perspect Biol 2:a003483

    PubMed Central  PubMed  Google Scholar 

  • Freeland SJ, Hurst LD (1998) The genetic code is one in a million. J Mol Evol 47:238–248

    Article  CAS  PubMed  Google Scholar 

  • Gilbert W (1986) The RNA world. Nature 319:618

    Article  Google Scholar 

  • Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35:849–857

    Article  CAS  PubMed  Google Scholar 

  • Haig D, Hurst LD (1991) A quantitative measure of error minimization in the genetic code. J Mol Evol 33:412–417

    Article  CAS  PubMed  Google Scholar 

  • Higgs PG, Pudritz RE (2007) From protoplanetary disks to prebiotic amino acids and the origin of the genetic code. In: Pudritz RE, Higgs PG, Stone J (eds) Planetary systems and the origins of life. Cambridge series in astrobiology, vol 3. Cambridge University Press, Cambridge

    Google Scholar 

  • Hsiao C, Mohan S, Kalahar BK, Williams LD (2009) Peeling the onion: ribosomes are ancient molecular fossils. Mol Biol Evol 26:2415–2425

    Article  CAS  PubMed  Google Scholar 

  • Johannsen W (1909) Elemente der exacten Erblichkeitslehre. Gustav Fischer, Jena

    Google Scholar 

  • Kurland CG (1970) Ribosome structure and function emergent. Science 169:1171–1177

    Article  CAS  PubMed  Google Scholar 

  • Luisi PL, Varela FJ (1989) Self-replicating micelles – a chemical version of a minimal autopoietic system. Orig Life Evol Biosph 19:633–643

    Article  CAS  Google Scholar 

  • Maizels N, Weiner AM (1987) Peptide-specific ribosomes, genomic tags and the origin of the genetic code. Cold Spring Harb Symp Quant Biol 52:743–757

    Article  CAS  PubMed  Google Scholar 

  • Maynard Smith J, Szathmáry E (1995) The major transitions in evolution. Oxford University Press, Oxford

    Google Scholar 

  • Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science 117:528–529

    Article  CAS  PubMed  Google Scholar 

  • Morowitz HJ (1992) Beginnings of cellular life. Yale University Press, New Haven

    Google Scholar 

  • Niesert U, Harnasch D, Bresch C (1981) Origin of life between Scylla and Charybdis. J Mol Evol 17:348–353

    Article  CAS  PubMed  Google Scholar 

  • Nitta I, Kamada Y, Noda H, Ueda T, Watanabe K (1998) Reconstitution of peptide bond formation. Science 281:666–669

    Article  CAS  PubMed  Google Scholar 

  • Nomura M, Tissières A, Lengyel P (1974) Ribosomes. Cold Spring Harbor monograph series. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Orgel LE (1973) The origins of life. Wiley, New York

    Google Scholar 

  • Osawa S (1995) Evolution of the genetic code. Oxford University Press, Oxford/New York

    Google Scholar 

  • Schimmel P, Giegé R, Moras D, Yokoyama S (1993) An operational RNA code for amino acids and possible relationship to genetic code. Proc Natl Acad Sci U S A 90:8763–8768

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Segré D, Ben Eli D, Deamer DW, Lancet D (2001) The lipid world. Orig Life Evol Biosph 31:119–145

    Article  PubMed  Google Scholar 

  • Spiegelman S (1967) An in vitro analysis of a replicating molecule. Am Sci 55:3–68

    Google Scholar 

  • Szathmáry E (1999) Chemes, genes, memes: a revised classification of replicators. Lect Math Life Sci 26:1–10

    Google Scholar 

  • Wimberly BT, Brodersen DE, Clemons WM Jr, Morgan-Warren RJ, Carter AP, Vonrhein C, Hartsch T, Ramakrishnan V (2000) Structure of the 30S ribosomal subunit. Nature 407:327–339

    Article  CAS  PubMed  Google Scholar 

  • Woese CR (1965) Order in the genetic code. Proc Natl Acad Sci U S A 54:71–75

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    CAS  PubMed Central  PubMed  Google Scholar 

  • Woese CR (2000) Interpreting the universal phylogenetic tree. Proc Natl Acad Sci U S A 97:8392–8396

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Woese CR (2002) On the evolution of cells. Proc Natl Acad Sci U S A 99:8742–8747

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Woese CR, Dugre DH, Saxinger WC, Dugre SA (1966) The molecular basis for the genetic code. Proc Natl Acad Sci U S A 55:966–974

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wolf YI, Koonin EV (2007) On the origin of the translation system and the genetic code in the RNA world by means of natural selection, exaptation, and subfunctionalization. Biol Direct 2:14

    Article  PubMed Central  PubMed  Google Scholar 

  • Wong JTF (1981) Coevolution of genetic code and amino acid biosynthesis. TIBS 33–36

    Google Scholar 

  • Wong JT, Bronskill PM (1979) Inadequacy of prebiotic synthesis as origin of proteinous amino acids. J Mol Evol 13:115–125

    Article  CAS  PubMed  Google Scholar 

  • Guerrier-Takada C, Altman S (1984) Catalytic activity of an RNA molecule prepared by transcription in vitro. Science 223:285–286

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Barbieri, M. (2015). Life Before the Cell. In: Code Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-14535-8_4

Download citation

Publish with us

Policies and ethics