Skip to main content

Fireflies in the Fruits and Vegetables: Combining the Firefly Algorithm with Goal Programming for Setting Optimal Osmotic Dehydration Parameters of Produce

  • Chapter
  • First Online:
Recent Advances in Swarm Intelligence and Evolutionary Computation

Part of the book series: Studies in Computational Intelligence ((SCI,volume 585))

Abstract

This study employs the Firefly Algorithm (FA) to determine the optimal parameter settings needed in the osmotic dehydration process of fruits and vegetables. Two case studies are considered. For both cases, the functional form of the osmotic dehydration model is established using response surface techniques with the resulting optimization formulations being non-linear goal programming models. For optimization purposes, a computationally efficient, FA-driven method is employed and the resulting solutions are shown to be superior to those from previous approaches for the osmotic process parameters. The final component of this study provides a computational experimentation performed on the FA to illustrate the relative sensitivity of this nature-inspired metaheuristic approach over a range of the two key parameters that most influence its running time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Geohive (2014) Geohive World Crop Production www.geohive.com/charts/ag_crops.aspx

  2. Mehta, B.K., Jain, S.K., Sharma, G.P., Mugdal, V.D., Verma, R.C., Doshi, A., Jain, H.K.: Optimization of osmotic drying parameters for button mushroom (Agaricus bisporus). Food Sci. Technol. 3(10A), 1298–1305 (2012)

    Google Scholar 

  3. Venturini, M.E., Reyes, J.E., Rivera, C.S., Oria, R., Blanco, D.: Microbiological quality and safety of fresh cultivated and wild mushrooms commercialized in Spain. Food Microbiol. 28(8), 1492–1498 (2011)

    Article  Google Scholar 

  4. Ranganna, S.: Handbook of Analysis and Quality Control for Fruits and Vegetable Products. Tata McGraw Hill Publishing, New Delhi (1986)

    Google Scholar 

  5. Jain, S.K., Verma, R.C.: Osmotic dehydration: A new, promising and emerging industry. Beverage Food World 30(1), 30–34 (2003)

    Google Scholar 

  6. Rosa, M.D., Giroux, F.: Osmotic treatments and problems related to the solution management. J. Food Eng. 49(3), 223–236 (2001)

    Article  Google Scholar 

  7. Rastogi, N.K., Raghavarao, K.S.M.S., Niranjan, K., Knorr, D.: Recent developments in osmotic dehydration: Method to enhance mass transfer. Food Sci. Technol. 13(1), 48–59 (2002)

    Article  Google Scholar 

  8. Hawkes, J., Fink, J.M.: Osmotic concentration of fruit slices prior to dehydration. Food Process. Preserv. 2(4), 265–267 (1978)

    Article  Google Scholar 

  9. Shukla, B.D., Singh, S.P.: Osmo-convective drying of cauliflower, mushroom and green pea. Food Eng. 80(2), 741–747 (2007)

    Article  Google Scholar 

  10. Nieto, A., Castro, M.A., Alzamora, A.: Kinetics of moisture transfer during air drying of blanched and/or osmotically dehydrated mango. J. Food Eng. 50(2), 175–185 (2001)

    Article  Google Scholar 

  11. Tonon, R.V., Baroni, A.F., Hubinges, M.D.: Osmotic dehydration of tomato in ternary solutions: Influence of process variables on mass transfer kinetics and an evaluation of the retention of arytenoids. Food Eng. 82(4), 509–517 (2007)

    Article  Google Scholar 

  12. Jain, S.K., Verma, R.C., Murdia, L.K., Jain, H.K., Sharma, G.P.: Optimization of process parameters for osmotic dehydration of papaya cubes. Food Sci. Technol. 48(2), 211–217 (2011)

    Article  Google Scholar 

  13. Kar, A., Gupta, D.K.: Osmotic dehydration characteristics of button mushrooms. J. Food Sci. Technol. 38(4), 352–357 (2001)

    Google Scholar 

  14. Sodhi, N.S., Singh, N., Komal, K.: Osmotic dehydration kinetics of carrots. J. Food Sci. Technol. 43(4), 374–376 (2006)

    Google Scholar 

  15. Torreggiani, D., Bertolo, G.: Osmotic pretreatments in fruit processing: chemical, physical and structural effects. J. Food Eng. 49(30), 247–253 (2001)

    Article  Google Scholar 

  16. Yeomans, J.S., Yang, X.S.: Determining optimal osmotic drying parameters using the firefly algorithm. International conference on applied operational research (ICAOR), Vancouver, Canada, 29–31 July (2014a)

    Google Scholar 

  17. Box, G.E., Behnken, D.W.: Some new three level designs for the study of quantitative three variables. Technometrics 2(4), 455–475 (1960)

    Article  MathSciNet  Google Scholar 

  18. Montgomery, D.C.: Design and Analysis of Experiments, 4th edn. Wiley, New York (1997)

    MATH  Google Scholar 

  19. Myers, R.H., Montgomery, D.C.: Response Surface Methodology : Process and Product Optimization Using Designed Experiments. Wiley, New York (1995)

    MATH  Google Scholar 

  20. Imanirad, R., Yang, X.S., Yeomans, J.S.: Modelling-to-generate-alternatives via the firefly algorithm. J. Appl. Oper. Res. 5(1), 14–21 (2013)

    Google Scholar 

  21. Yang, X.S.: Nature-Inspired Metaheuristic Algorithms, 2nd edn. Luniver Press, Frome (2010)

    Google Scholar 

  22. Yeomans, J.S., Yang, X.S.: Municipal waste management optimization using a firefly algorithm-driven simulation-optimization approach. Int. J. Process Manage. Benchmarking (4(4), 363–375, 2014b)

    Google Scholar 

  23. Alam, M.S., Singh, A., Sawhney, B.K.: Response surface optimization of osmotic dehydration process for anola slices. Food Sci. Technol. 47(1), 47–54 (2010)

    Article  Google Scholar 

  24. Mudhar, G.S., Toledo, R.T., Floros, J.D., Jen, J.J.: Optimization of carrot dehydration process using response surface methodology. J. Food Sci. 54(11), 714–719 (1989)

    Article  Google Scholar 

  25. Shi, L., Xue, C.H., Zhao, Y., Li, Z.J., Wang, X.Y., Luan, D.L.: Optimization of processing parameters of horse mackerel (Trachurus japonicus) dried in a heat pump dehumidifier using response surface methodology. Food Eng. 87(1), 74–81 (2008)

    Article  Google Scholar 

  26. Uddin, M.B., Amsworth, P., Ibanoglu, S.: Evaluation of mass exchange during osmotic dehydration of carrots using response surface methodology. Food Eng. 65(4), 473–477 (2004)

    Article  Google Scholar 

  27. Yeomans, J.S.: Simulation-driven optimization in waste management facility expansion planning. J Comput. Methods Sci. Eng. 12(1/2), 111–127 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Scott Yeomans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Imanirad, R., Yeomans, J.S. (2015). Fireflies in the Fruits and Vegetables: Combining the Firefly Algorithm with Goal Programming for Setting Optimal Osmotic Dehydration Parameters of Produce. In: Yang, XS. (eds) Recent Advances in Swarm Intelligence and Evolutionary Computation. Studies in Computational Intelligence, vol 585. Springer, Cham. https://doi.org/10.1007/978-3-319-13826-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13826-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13825-1

  • Online ISBN: 978-3-319-13826-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics