Skip to main content

Mobile Medical Applications

  • Chapter
  • First Online:
Holographic Sensors

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The development of medical smartphone applications (apps) can allow quantification of rapid diagnostics at point-of-care and enable clinical data collection in real time. Mobile medical apps can reduce the erroneous subjective readouts, and create a standard readout platform with connectivity options at low cost. This chapter demonstrates the development of an app algorithm that utilises the camera of the Android and iPhone smartphones to read colorimetric tests. This smartphone app can be used with dipsticks, lateral-flow and flow-through assays as well as aqueous colorimetric tests that are typically read by spectrophotometers or microplate readers. The mobile app was designed to provide on-site quantitative screening when rapid diagnosis is needed. The utility of the smartphone app was demonstrated through quantifying pH, the concentrations of protein and glucose in commercial urine test strips, which had linear responses in the ranges of 5.0–9.0, 15–100 and 50–300 mg/dL, respectively. The app can be adapted for semi-quantitative analysis of commercial colorimetric tests, rendering it an inexpensive and accessible alternative to more costly commercial readers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Urdea M, Penny LA, Olmsted SS, Giovanni MY, Kaspar P, Shepherd A, Wilson P, Dahl CA, Buchsbaum S, Moeller G, Hay Burgess DC (2006) Requirements for high impact diagnostics in the developing world. Nature 444(Suppl 1):73–79. doi:10.1038/nature05448

    Article  Google Scholar 

  2. Whitesides GM (2013) A glimpse into the future of diagnostics. Clin Chem 59(4):589–591. doi:10.1373/clinchem.2013.204347

    Article  CAS  Google Scholar 

  3. Girosi F, Olmsted SS, Keeler E, Hay Burgess DC, Lim YW, Aledort JE, Rafael ME, Ricci KA, Boer R, Hilborne L, Derose KP, Shea MV, Beighley CM, Dahl CA, Wasserman J (2006) Developing and interpreting models to improve diagnostics in developing countries. Nature 444(Suppl 1):3–8. doi:10.1038/nature05441

    Article  Google Scholar 

  4. Gordon J, Michel G (2012) Discerning trends in multiplex immunoassay technology with potential for resource-limited settings. Clin Chem 58(4):690–698. doi:10.1373/clinchem.2011.176503

    Article  CAS  Google Scholar 

  5. Yager P, Domingo GJ, Gerdes J (2008) Point-of-care diagnostics for global health. Annu Rev Biomed Eng 10:107–144. doi:10.1146/annurev.bioeng.10.061807.160524

    Article  CAS  Google Scholar 

  6. Gubala V, Harris LF, Ricco AJ, Tan MX, Williams DE (2012) Point of care diagnostics: status and future. Anal Chem 84(2):487–515. doi:10.1021/ac2030199

    Article  CAS  Google Scholar 

  7. Webster M, Kumar V (2012) Automated doctors: cell phones as diagnostic tools. Clin Chem 58(11):1607–1609. doi:10.1373/clinchem.2012.194555

    Article  CAS  Google Scholar 

  8. Mobile-Cellular Subscriptions (2014) International Telecommunication Union, Place des Nations. http://www.itu.int. Accessed 27 Oct 2014

  9. Lee DS, Jeon BG, Ihm C, Park JK, Jung MY (2011) A simple and smart telemedicine device for developing regions: a pocket-sized colorimetric reader. Lab Chip 11(1):120–126. doi:10.1039/c0lc00209g

    Article  CAS  Google Scholar 

  10. Kroemer S, Fruhauf J, Campbell TM, Massone C, Schwantzer G, Soyer HP, Hofmann-Wellenhof R (2011) Mobile teledermatology for skin tumour screening: diagnostic accuracy of clinical and dermoscopic image tele-evaluation using cellular phones. Br J Dermatol 164(5):973–979. doi:10.1111/j.1365-2133.2011.10208.x

    Article  CAS  Google Scholar 

  11. Breslauer DN, Maamari RN, Switz NA, Lam WA, Fletcher DA (2009) Mobile phone based clinical microscopy for global health applications. PLoS ONE 4(7):e6320. doi:10.1371/journal.pone.0006320

    Article  Google Scholar 

  12. Tseng D, Mudanyali O, Oztoprak C, Isikman SO, Sencan I, Yaglidere O, Ozcan A (2010) Lensfree microscopy on a cellphone. Lab Chip 10(14):1787–1792. doi:10.1039/c003477k

    Article  CAS  Google Scholar 

  13. Smith ZJ, Chu K, Espenson AR, Rahimzadeh M, Gryshuk A, Molinaro M, Dwyre DM, Lane S, Matthews D, Wachsmann-Hogiu S (2011) Cell-phone-based platform for biomedical device development and education applications. PLoS ONE 6(3):e17150. doi:10.1371/journal.pone.0017150

    Article  CAS  Google Scholar 

  14. Pamplona VF, Mohan A, Oliveira MM, Raskar R (2010) Dual of shack-hartmann optometry using mobile phones, frontiers in optics. In: OSA technical digest (CD), Optical Society of America, p FTuB4. doi:10.1364/FIO.2010.FTuB4

  15. Zhu H, Mavandadi S, Coskun AF, Yaglidere O, Ozcan A (2011) Optofluidic fluorescent imaging cytometry on a cell phone. Anal Chem 83(17):6641–6647. doi:10.1021/ac201587a

    Article  CAS  Google Scholar 

  16. Coskun A, Wong J, Khodadadi D, Nagi R, Tey A, Ozcan A (2012) A personalized food allergen testing platform on a cellphone. Lab Chip 13:636–640. doi:10.1039/C2LC41152K

  17. Martinez AW, Phillips ST, Whitesides GM (2008) Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc Natl Acad Sci USA 105(50):19606–19611. doi:10.1073/pnas.0810903105

    Article  CAS  Google Scholar 

  18. Pollock NR, Rolland JP, Kumar S, Beattie PD, Jain S, Noubary F, Wong VL, Pohlmann RA, Ryan US, Whitesides GM (2012) A paper-based multiplexed transaminase test for low-cost, point-of-care liver function testing. Sci Transl Med 4 (152):152ra129. doi:10.1126/scitranslmed.3003981

  19. Mudanyali O, Dimitrov S, Sikora U, Padmanabhan S, Navruz I, Ozcan A (2012) Integrated rapid-diagnostic-test reader platform on a cellphone. Lab Chip 12(15):2678–2686. doi:10.1039/c2lc40235a

    Article  CAS  Google Scholar 

  20. Shen L, Hagen JA, Papautsky I (2012) Point-of-care colorimetric detection with a smartphone. Lab Chip 12(21):4240–4243. doi:10.1039/c2lc40741h

    Article  CAS  Google Scholar 

  21. Yetisen AK, Martinez-Hurtado JL, Garcia-Melendrez A, Vasconcellos FC, Lowe CR (2014) A smartphone algorithm with inter-phone repeatability for the analysis of colorimetric tests. Sens Actuators B 196:156–160. doi:10.1016/j.snb.2014.01.077

    Article  CAS  Google Scholar 

  22. Hunt RW (1998) Measuring colour, 3rd edn. Fountain Press, London

    Google Scholar 

  23. Gouda MD, Singh SA, Rao AG, Thakur MS, Karanth NG (2003) Thermal inactivation of glucose oxidase. Mechanism and stabilization using additives. J Biol Chem 278(27):24324–24333. doi:10.1074/jbc.M208711200

    Article  CAS  Google Scholar 

  24. Zoldak G, Zubrik A, Musatov A, Stupak M, Sedlak E (2004) Irreversible thermal denaturation of glucose oxidase from Aspergillus niger is the transition to the denatured state with residual structure. J Biol Chem 279(46):47601–47609. doi:10.1074/jbc.M406883200

    Article  CAS  Google Scholar 

  25. Brooks T, Keevil CW (1997) A simple artificial urine for the growth of urinary pathogens. Lett Appl Microbiol 24(3):203–206. doi:10.1046/j.1472-765X.1997.00378.x

  26. Yetisen AK, Montelongo Y, da Cruz Vasconcellos F, Martinez-Hurtado JL, Neupane S, Butt H, Qasim MM, Blyth J, Burling K, Carmody JB, Evans M, Wilkinson TD, Kubota LT, Monteiro MJ, Lowe CR (2014) Reusable, robust, and accurate laser-generated photonic nanosensor. Nano Lett 14(6):3587–3593. doi:10.1021/nl5012504

    Article  CAS  Google Scholar 

  27. Yetisen AK, Qasim MM, Nosheen S, Wilkinson TD, Lowe CR (2014) Pulsed laser writing of holographic nanosensors. J Mater Chem C 2(18):3569–3576. doi:10.1039/C3tc32507e

    Article  CAS  Google Scholar 

  28. Yetisen AK, Butt H, da Cruz Vasconcellos F, Montelongo Y, Davidson CAB, Blyth J, Chan L, Carmody JB, Vignolini S, Steiner U, Baumberg JJ, Wilkinson TD, Lowe CR (2014) Light-directed writing of chemically tunable narrow-band holographic sensors. Adv Opt Mater 2(3):250–254. doi:10.1002/adom.201300375

    Article  Google Scholar 

  29. Yetisen AK, Naydenova I, Vasconcellos FC, Blyth J, Lowe CR (2014) Holographic sensors: three-dimensional analyte-sensitive nanostructures and their applications. Chem Rev 114(20):10654–10696. doi:10.1021/cr500116a

    Article  CAS  Google Scholar 

  30. Yetisen AK, Montelongo Y, Qasim MM, Butt H, Wilkinson TD, Monteiro MJ, Lowe CR, Yun SH (2014) Nanocrystal bragg grating sensor for colorimetric detection of metal ions (under review)

    Google Scholar 

  31. Tsangarides CP, Yetisen AK, da Cruz Vasconcellos F, Montelongo Y, Qasim MM, Wilkinson TD, Lowe CR, Butt H (2014) Computational modelling and characterisation of nanoparticle-based tuneable photonic crystal sensors. RSC Adv 4(21):10454–10461. doi:10.1039/C3RA47984F

    Article  CAS  Google Scholar 

  32. Farandos NM, Yetisen AK, Monteiro MJ, Lowe CR, Yun SH (2014) Contact lens sensors in ocular diagnostics. Adv Healthc Mater. doi:10.1002/adhm.201400504

  33. Deng S, Yetisen AK, Jiang K, Butt H (2014) Computational modelling of a graphene Fresnel lens on different substrates. RSC Adv 4(57):30050–30058. doi:10.1039/C4ra03991b

    Article  CAS  Google Scholar 

  34. Kong X-T, Butt H, Yetisen AK, Kangwanwatana C, Montelongo Y, Deng S, Fd Cruz Vasconcellos, Qasim MM, Wilkinson TD, Dai Q (2014) Enhanced reflection from inverse tapered nanocone arrays. Appl Phys Lett 105(5):053108. doi:10.1063/1.4892580

    Article  Google Scholar 

  35. Vasconcellos FD, Yetisen AK, Montelongo Y, Butt H, Grigore A, Davidson CAB, Blyth J, Monteiro MJ, Wilkinson TD, Lowe CR (2014) Printable surface holograms via laser ablation. ACS Photonics 1(6):489–495. doi:10.1021/Ph400149m

    Article  CAS  Google Scholar 

  36. Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam MR, Weigl BH (2006) Microfluidic diagnostic technologies for global public health. Nature 442(7101):412–418. doi:10.1038/nature05064

    Article  CAS  Google Scholar 

  37. Chin CD, Laksanasopin T, Cheung YK, Steinmiller D, Linder V, Parsa H, Wang J, Moore H, Rouse R, Umviligihozo G, Karita E, Mwambarangwe L, Braunstein SL, van de Wijgert J, Sahabo R, Justman JE, El-Sadr W, Sia SK (2011) Microfluidics-based diagnostics of infectious diseases in the developing world. Nat Med 17(8):1015–1019. doi:10.1038/nm.2408

    Article  CAS  Google Scholar 

  38. Chin CD, Cheung YK, Laksanasopin T, Modena MM, Chin SY, Sridhara AA, Steinmiller D, Linder V, Mushingantahe J, Umviligihozo G, Karita E, Mwambarangwe L, Braunstein SL, van de Wijgert J, Sahabo R, Justman JE, El-Sadr W, Sia SK (2013) Mobile device for disease diagnosis and data tracking in resource-limited settings. Clin Chem 59(4):629–640. doi:10.1373/clinchem.2012.199596

    Article  CAS  Google Scholar 

  39. Yang X, Piety NZ, Vignes SM, Benton MS, Kanter J, Shevkoplyas SS (2013) Simple paper-based test for measuring blood hemoglobin concentration in resource-limited settings. Clin Chem 59(10):1506–1513. doi:10.1373/clinchem.2013.204701

    Article  CAS  Google Scholar 

  40. Yetisen AK, Volpatti LR (2014) Patent protection and licensing in microfluidics. Lab Chip 14(13):2217–2225. doi:10.1039/c4lc00399c

    Article  CAS  Google Scholar 

  41. Volpatti LR, Yetisen AK (2014) Commercialization of microfluidic devices. Trends Biotechnol 32(7):347–350. doi:10.1016/j.tibtech.2014.04.010

    Article  CAS  Google Scholar 

  42. Yetisen AK, Jiang L, Cooper JR, Qin Y, Palanivelu R, Zohar Y (2011) A microsystem-based assay for studying pollen tube guidance in plant reproduction. J Micromech Microeng 21(5):054018. doi:10.1088/0960-1317/21/5/054018

    Article  Google Scholar 

  43. Yetisen AK, Akram MS, Lowe CR (2013) Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13(12):2210–2251. doi:10.1039/c3lc50169h

    Article  CAS  Google Scholar 

  44. Akram MS, Daly R, Vasconcellos FC, Yetisen AK, Hutchings I, Hall EAH (2015) Applications of paper-based diagnostics. In: Castillo-Leon J, Svendsen WE (eds) Lab-on-a-Chip Devices and Micro-Total Analysis Systems. Springer, Berlin

    Google Scholar 

  45. Yetisen AK, Martinez-Hurtado JL, da Cruz Vasconcellos F, Simsekler MC, Akram MS, Lowe CR (2014) The regulation of mobile medical applications. Lab Chip 14(5):833–840. doi:10.1039/c3lc51235e

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Kemal Yetisen .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yetisen, A.K. (2015). Mobile Medical Applications. In: Holographic Sensors. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-13584-7_6

Download citation

Publish with us

Policies and ethics