Skip to main content

Antimicrobial Potential of Cold-Adapted Bacteria and Fungi from Polar Regions

  • Chapter
  • First Online:
Book cover Biotechnology of Extremophiles:

Part of the book series: Grand Challenges in Biology and Biotechnology ((GCBB,volume 1))

Abstract

The discovery of novel and efficient antimicrobial compounds has become a focal point of interest for natural product chemistry. To this purpose, the exploration of unusual and underexplored sources of medically useful substances and the screening of less exploited microbial groups have been recognized as promising tools for the isolation of novel antimicrobial compounds with unique structures and specific biological activity. Many different, complex and sophisticated survival strategies, which are quite relevant for the ecology of cold-adapted microorganisms (including bacteria, cyanobacteria and fungi), might render them valuable resources also for biotechnological purposes. Cold-adapted microbial producers of antibacterial and antifungal compounds have been isolated from various aquatic and terrestrial environments in both Antarctica and the Arctic. In some cases, the microbial inhibitor compound has been extracted and (partially o fully) characterized. The versatile antimicrobial potential of microorganisms from Polar Regions is discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Zereini W, Schuhmann I, Laatsch H, Helmke E, Anke H (2007) New aromatic nitro compounds from Salegentibacter sp. T436, an Arctic sea ice bacterium: taxonomy, fermentation, isolation and biological activities. J Antibiot 60:301–308

    Article  CAS  PubMed  Google Scholar 

  • Asencio G, Lavina P, Alegría K, Domínguez M, Bello H, González-Rocha G, González-Aravena M (2009) Antibacterial activity of the Antarctic bacterium Janthinobacterium sp. SMN 33.6 against multi-resistant Gram-negative bacteria. Electron J Biotechnol 17:1–5

    Article  Google Scholar 

  • Asthana RK, Deepali TMK, Srivastava A, Singh AP, Singh SP, Nath G, Srivastava R, Srivastava BS (2009) Isolation and identification of a new antibacterial entity from the Antarctic cyanobacterium Nostoc CCC 537. J Phycol 21:81–88

    Article  CAS  Google Scholar 

  • Bell TH, Callender KL, Whyte LG, Greer CW (2013) Microbial competition in polar soils: a review of an understudied but potentially important control on productivity. Biology 2:533–554

    Article  PubMed  PubMed Central  Google Scholar 

  • Bérdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26

    Article  PubMed  Google Scholar 

  • Biondi N, Tredici MR, Taton A, Wilmotte A, Hodgson DA, Losi D, Marinelli F (2008) Cyanobacteria from benthic mats of Antarctic lakes as a source of new bioactivities. J Appl Microbiol 105:105–115

    Article  CAS  PubMed  Google Scholar 

  • Bosi E, Fondi M, Maida I, Perrin E, de Pascale D, Tutino ML, Parrilli E, Lo Giudice A, Filloux A, Fani R (2015) Genome-scale phylogenetic and DNA composition analyses of Antarctic Pseudoalteromonas bacteria reveal inconsistencies in current taxonomic affiliation. Hydrobiologia 761:85–95.

    Google Scholar 

  • Bratchkova A, Ivanova V (2011) Bioactive metabolites produced by microorganisms collected in Antarctica and the Arctic. Biotechnol Biotechnol Equip 25:1–7

    Article  Google Scholar 

  • Brunati M, Rojas JL, Sponga F, Ciciliato I, Losi D, Göttlich E, de Hoog S, Genilloud O, Marinelli F (2009) Diversity and pharmaceutical screening of fungi from benthic mats of Antarctic lakes. Mar Genomics 2:43–50

    Article  PubMed  Google Scholar 

  • Bruntner C, Binder T, Pathom-aree W, Goodfellow M, Bull AT, Potterat O, Puder C, Hörer S, Schmid A, Bolek W, Wagner K, Mihm G, Fiedler H-P (2005) Frigocyclinone, a novel angucyclinone antibiotic by a Streptomyces griseus strain from Antarctica. J Antibiot 58:346–349

    Article  CAS  PubMed  Google Scholar 

  • Bull AT, Stach JEM (2007) Marine actinobacteria: new opportunities for natural product search and discovery. Trends Microbiol 15:491–499

    Article  CAS  PubMed  Google Scholar 

  • Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR (2002) Low-temperature extremophiles and their applications. Curr Opin Biotechnol 13:253–261

    Article  CAS  PubMed  Google Scholar 

  • de Pascale D, de Santi C, Fu J, Landfald B (2012) The microbial diversity of Polar environments is a fertile ground for bioprospecting. Mar Genomics 8:15–22

    Article  PubMed  Google Scholar 

  • Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208

    Article  CAS  PubMed  Google Scholar 

  • Fondi M, Orlandini V, Maida I, Perrin E, Papaleo MC, Emiliani G, de Pascale D, Parrilli E, Tutino ML, Michaud L, Lo Giudice A, Fani R (2012) The draft genome of the VOCs-producing Antarctic bacterium Arthrobacter sp. TB23 able to inhibit Cystic Fibrosis pathogens belonging to the Burkholderia cepacia complex. J Bacteriol 194:6334–6335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fondi M, Orlandini V, Perrin E, Maida I, Bosi E, Papaleo MC, Michaud L, Lo Giudice A, de Pascale D, Tutino ML, Liò P, Fani R (2014) Draft genomes of three Antarctic Psychrobacter strains known to have antimicrobial activity against Burkholderia cepacia complex opportunistic pathogens. Mar Genomics 13:37–38

    Article  PubMed  Google Scholar 

  • Frisvad JC, Smedsgaard J, Larsen TO, Samson RA (2004) Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus. Stud Mycol 49:201–241

    Google Scholar 

  • Furbino LE, Godinho VM, Santiago IF, Pellizari FM, Alves TM, Zani CL, Junior PA, Romanha AJ, Carvalho AG, Gil LH, Rosa CA, Minnis AM, Rosa LH (2014) Diversity patterns, ecology and biological activities of fungal communities associated with the endemic macroalgae across the Antarctic peninsula. Microb Ecol 67:775–787

    Article  PubMed  Google Scholar 

  • Gerwick WH, Moore BS (2012) Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. Chem Biol 19:85–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gesheva V (2009) Distribution of psychrophilic microorganisms in soils of Terra Nova Bay and Edmonson Point, Victoria Land and their biosynthetic capabilities. Polar Biol 32:1287–1291

    Article  Google Scholar 

  • Gesheva V (2010) Production of antibiotics and enzymes by soil microorganisms from the Windmill Islands Region, Wilkes Land, East Antarctica. Polar Biol 33:1351–1357

    Article  Google Scholar 

  • Gesheva V, Negoita T (2012) Psychrotrophic microorganism communities in soils of Haswell Island, Antarctica, and their biosynthetic potential. Polar Biol 35:291–297

    Article  Google Scholar 

  • Gesheva V, Vasileva-Tonkova E (2012) Production of enzymes and antimicrobial compounds by halophilic Antarctic Nocardioides sp. grown on different carbon sources. World J Microbiol Biotechnol 28:2069–2076

    Article  CAS  PubMed  Google Scholar 

  • Giddings L-A, Newman DJ (2015) Bioactive compounds from marine extremophiles. Springer Briefs Microbiol 1–124

    Google Scholar 

  • Godinho VM, Furbino LE, Santiago IF, Pellizzari FM, Yokoya NS, Pupo D, Alves TM, Junior PA, Romanha AJ, Zani CL, Cantrell CL, Rosa CA, Rosa LH (2013) Diversity and bioprospecting of fungal communities associated with endemic and cold-adapted macroalgae in Antarctica. ISME J 7:1434–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godinho VM, Gonçalves VN, Santiago IF, Figueredo HM, Vitoreli GA, Schaefer CE, Barbosa EC, Oliveira JG, Alves TM, Zani CL, Junior PA, Murta SM, Romanha AJ, Kroon EG, Cantrell CL, Wedge DE, Duke SO, Ali A, Rosa CA, Rosa LH (2015) Diversity and bioprospection of fungal community present in oligotrophic soil of continental Antarctica. Extremophiles 19:585–596

    Article  PubMed  Google Scholar 

  • Hemala L, Zhanga D, Margesin R (2014) Cold-active antibacterial and antifungal activities and antibiotic resistance of bacteria isolated from an alpine hydrocarbon-contaminated industrial site. Res Microbiol 165:447–456

    Article  CAS  PubMed  Google Scholar 

  • Henríquez M, Vergara K, Norambuena J, Beiza A, Maza F, Ubilla P, Araya I, Chávez R, San-Martín A, Darias J, Darias MJ, Vaca I (2014) Diversity of cultivable fungi associated with Antarctic marine sponges and screening for their antimicrobial, antitumoral and antioxidant potential. World J Microbiol Biotechnol 30:65–76

    Article  PubMed  Google Scholar 

  • Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J, Moore BS (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68:4431–4440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang JP, Mojib N, Rr G, Watkins S, Waites KB, Ravindra R, Andersen DT, Bej AK (2012) Antimicrobial activity of PVP from an Antarctic bacterium, Janthinobacterium sp. Ant5-2, on multi-drug and methicillin resistant Staphylococcus aureus. Nat Prod Bioprospect 2:104–110

    Article  CAS  PubMed Central  Google Scholar 

  • Ivanova V, Oriol M, Montes M-J, García A, Guinea J (2001) Secondary metabolites from a Streptomyces strain isolated from Livingston Island. Antarctica Z Naturforsch C 56:1–5

    Article  CAS  PubMed  Google Scholar 

  • Ivanova V, Yocheva L, Schlegel R, Graefe U, Kolarova M, Aleksieva K, Naidenova M (2002) Antibiotic complex from Streptomyces flavovirens 67, isolated from Livingston Island, Antarctica. Bulgarian Antarct Res Life Sci 3:35–42

    Google Scholar 

  • Jayatilake GS, Thornton MP, Leonard AC, Grimwade JE, Baker BJ (1996) Metabolites from an Antarctic sponge-associated bacterium, Pseudomonas aeruginosa. J Nat Prod 59:293–296

    Article  CAS  PubMed  Google Scholar 

  • Kim M-K, Park H, Oh T-J (2012) Antibacterial properties associated with microorganisms isolated from Arctic lichens. Korean J Microbiol Biotechnol 40:380–388

    Article  CAS  Google Scholar 

  • Kim M-K, Park H, Oh T-J (2013) Antibacterial properties of the bacterial associates of the Arctic lichen Stereocaulon sp. Afr J Microbiol Res 7:3651–3657

    Google Scholar 

  • Kim M-K, Park H, Oh T-J (2014a) Antibacterial and antioxidant capacity of polar microorganisms isolated from Arctic lichen Ochrolechia sp. Pol J Microbiol 63:317–322

    Article  PubMed  Google Scholar 

  • Kim M-K, Park H, Oh T-J (2014b) Antibacterial and antioxidant potential of polar microorganisms isolated from Antarctic lichen Psoroma sp. Afr J Microbiol Res 8:3529–3535

    Article  Google Scholar 

  • Kozlovsky AG, Zhelifonova VP, Antipova TV, Baskunov BP, Kochkina GA, Ozerskaya SM (2012) Secondary metabolite profiles of the Penicillium fungi isolated from the Arctic and Antarctic permafrost as elements of polyphase taxonomy. Microbiology 81:308–313

    Google Scholar 

  • Lee L-H, Cheah Y-K, Sidik SM, Ab Mutalib N-S, Tang Y-L, Lin H-P, Hong K (2012a) Molecular characterization of Antarctic actinobacteria and screening for antimicrobial metabolite production. World J Microbiol Biotechnol 28:2125–2137

    Article  CAS  PubMed  Google Scholar 

  • Lee L-H, Cheah Y-K, Syakima AMN, Shiran MS, Tang Y-L, Lin H-P, Hong K (2012b) Analysis of Antarctic proteobacteria by PCR fingerprinting and screening for antimicrobial secondary metabolites. Genet Mol Res 11:1627–1641

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Sun B, Liu S, Jiang L, Liu X, Zhang H, Che Y (2008) Bioactive asterric acid derivatives from the Antarctic ascomycete fungus Geomyces sp. J Nat Prod 1:1643–1646

    Article  Google Scholar 

  • Liu J-T, Lu X-L, Liu X-Y, Yun G, Bo H, Jiao B-H, Zheng H (2013) Bioactive natural products from the Antarctic and Arctic organisms source. Mini Rev Med Chem 13:617–626

    Article  PubMed  Google Scholar 

  • Lo Giudice A, Brilli M, Bruni V, De Domenico M, Fani R, Michaud L (2007a) Bacterium-bacterium inhibitory interactions among psychrotrophic bacteria isolated from Antarctic seawaters (Terra Nova Bay, Ross Sea). FEMS Microbiol Ecol 60:383–396

    Article  CAS  PubMed  Google Scholar 

  • Lo Giudice A, Bruni V, Michaud L (2007b) Characterization of Antarctic psychrotrophic bacteria with antibacterial activities against terrestrial microorganisms. J Basic Microbiol 47:496–505

    Article  CAS  PubMed  Google Scholar 

  • Lyutskanova D, Ivanova V, Stoilova-Disheva M, Kolarova M, Aleksieva K, Raykovska V, Peltekovavska V, Peltekova V (2009) Isolation, characterization and screening for antimicrobial activities of psychrotolerant Streptomycetes isolated from polar permafrost soil. Biotechnol Biotechnol Eq 23.

    Google Scholar 

  • Maida I, Fondi M, Papaleo MC, Perrin E, Orlandini V, Emiliani G, de Pascale D, Parrilli E, Tutino ML, Michaud L, Lo Giudice A, Romoli R, Bartolucci G, Fani R (2014) Phenotypic and genomic characterization of the Antarctic bacterium Gillisia sp. CAL575, a producer of antimicrobial compounds. Extremophiles 18:35–49

    Article  CAS  PubMed  Google Scholar 

  • Maida I, Bosi E, Fondi M, Perrin E, Orlandini V, Papaleo MC, Mengoni A, de Pascale D, Tutino ML, Michaud L, Lo Giudice A, Fani R (2015. Antimicrobial activity of Pseudoalteromonas strains isolated from the Ross Sea (Antarctica) vs Cystic Fibrosis opportunistic pathogens. Hydrobiologia 761:443–457

    Google Scholar 

  • Mangano S, Michaud L, Caruso C, Brilli M, Bruni V, Fani R, Lo Giudice A (2009) Antagonistic interactions among psychrotrophic cultivable bacteria isolated from Antarctic sponges: a preliminary analysis. Res Microbiol 160:27–37

    Article  CAS  PubMed  Google Scholar 

  • Manivasagan P, Venkatesan J, Sivakumar K, Kim S-K (2014) Pharmaceutically active secondary metabolites of marine actinobacteria. Microbiol Res 169:262–278

    Article  CAS  PubMed  Google Scholar 

  • Margesin R (2007) Alpine microorganism: useful tools for low-temperature bioremediation. J Microbiol 45:281–285

    CAS  PubMed  Google Scholar 

  • Melo IS, Santos SN, Rosa LH, Parma MM, Silva LJ, Queiroz SC, Pellizari VH (2014) Isolation and biological activities of an endophytic Mortierella alpina strain from the Antarctic moss Schistidium antarctici. Extremophiles 18:15–23

    Article  CAS  PubMed  Google Scholar 

  • Mojib N, Philpott R, Huang JP, Niederweis M, Bej AK (2010) Antimycobacterial activity in vitro of pigments isolated from Antarctic bacteria. Antonie Van Leeuwenhoek 98:531–540

    Article  CAS  PubMed  Google Scholar 

  • Moncheva P, Tishkov S, Dimitrova N, Chipeva V, Antonova-Nikolova S, Bogatzevska N (2002) Characteristics of soil Actinomycetes from Antarctica. J Cult Collect 3:3–14

    Google Scholar 

  • Montemartini Corte A, Liotta M, Venturi CB, Calegari L (2000) Antibacterial activity of Penicillium spp. strains isolated in extreme environments. Polar Biol 23:294–297

    Article  Google Scholar 

  • Moon K, Ahn C-H, Shin Y, Won TH, Ko K, Lee SK, Oh K-B, Shin J, Nam SI, Oh DC (2014) New benzoxazine secondary metabolites from an Arctic actinomycetes. Mar Drugs 12:2526–2538

    Article  PubMed  PubMed Central  Google Scholar 

  • Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nedialkova D, Naidenova M (2005) Screening the antimicrobial activity of Actinomycetes strains isolated from Antarctica. J Cult Collect 4:29–35

    Google Scholar 

  • O’Brien A, Sharp R, Russell NJ, Roller S (2004) Antarctic bacteria inhibit growth of food-borne microorganisms at low temperatures. FEMS Microbiol Ecol 48:157–167

    Article  PubMed  Google Scholar 

  • Onofri S, Fenice M, Cicalini AR, Tosi S, Magrino A, Pagano S, Selbmann L, Zucconi L, Vishniac HS, Ocampo‐Friedmann R, Friedmann EI (2000) Ecology and biology of microfungi from Antarctic rocks and soils. Ital J Zool 67:163–167

    Article  Google Scholar 

  • Orlandini V, Maida I, Fondi M, Perrin E, Papaleo MC, Bosi E, de Pascale D, Tutino ML, Michaud L, Lo Giudice A, Fani R (2014) Genomic analysis of three sponge-associated Arthrobacter Antarctic strains, inhibiting the growth of Burkholderia cepacia complex bacteria by synthesizing volatile organic compounds. Microbiol Res 169:593–601

    Article  CAS  PubMed  Google Scholar 

  • Pan SY, Tan GYA, Convey P, Pearce DA, Tan IKP (2013) Diversity and bioactivity of actinomycetes from Signy Island terrestrial soils, maritime Antarctic. Adv Polar Sci 24:208–212

    Article  Google Scholar 

  • Papaleo MC, Fondi M, Maida I, Perrin E, Lo Giudice A, Michaud L, Mangano S, Bartolucci G, Romoli R, Fani R (2012) Sponge-associated microbial Antarctic communities exhibiting antimicrobial activity against Burkholderia cepacia complex bacteria. Biotechnol Adv 30:272–293

    Article  CAS  PubMed  Google Scholar 

  • Papaleo MC, Romoli R, Bartolucci G, Maida I, Perrin E, Fondi M, Orlandini V, Mengoni A, Emiliani G, Tutino ML, Parrilli E, de Pascale D, Michaud L, Lo Giudice A, Fani R (2013) Bioactive volatile organic compounds from Antarctic (sponges) bacteria. New Biotechnol 30:824–838

    Article  CAS  Google Scholar 

  • Pearce DA (2012) Extremophiles in Antarctica: life at low temperatures. In: Stan-Lotter H, Fendrihan S (eds) Adaption of microbial life to environmental extremes. Springer, Vienna, pp 87–118

    Chapter  Google Scholar 

  • Prasad S, Manasa P, Buddhi S, Singh SM, Shivaji S (2011) Antagonistic interaction networks among bacteria from a cold soil environment. FEMS Microbiol Ecol 78:376–385

    Article  CAS  PubMed  Google Scholar 

  • Rojas JL, Martín J, Tormo JR, Vicente F, Brunati M, Ciciliato I, Losi D, Van Trappen S, Mergaert J, Swings J, Marinelli F, Genilloud O (2009) Bacterial diversity from benthic mats of Antarctic lakes as a source of new bioactive metabolites. Mar Genomics 2:33–41

    Article  PubMed  Google Scholar 

  • Romoli R, Papaleo MC, de Pascale D, Tutino ML, Michaud L, Lo Giudice A, Fani R, Bartolucci G (2011) Characterization of the volatile profile of Antarctic bacteria by using solid-phase microextraction – gas chromatography mass spectrometry. J Mass Spectrom 46:1051–1059

    Article  CAS  PubMed  Google Scholar 

  • Romoli R, Papaleo MC, de Pascale D, Tutino ML, Michaud L, Lo Giudice A, Fani R, Bartolucci G (2014) GC-MS volatolomic approach to study the antimicrobial activity of the Antarctic bacterium Pseudoalteromonas sp. TB41. Metabolomics 10:42–51

    Article  CAS  Google Scholar 

  • Russell NJ (2008) Membrane components and cold sensing. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, Heidelberg, pp 177–190

    Chapter  Google Scholar 

  • Schuhmann I, Yao CB, Al-Zereini W, Anke H, Helmke E, Laatsch H (2009) Nitro derivatives from the Arctic ice bacterium Salegentibacter sp. isolate T436. J Antibiot 62:453–460

    Article  CAS  PubMed  Google Scholar 

  • Shekh RM, Singh P, Singh SM, Roy U (2011) Antifungal activity of Arctic and Antarctic bacteria isolates. Polar Biol 34:139–143

    Article  Google Scholar 

  • Svahn KS, Chryssanthou E, Olsen B, Bohlin L, Göransson U (2015) Penicillium nalgiovense Laxa isolated from Antarctica is a new source of the antifungal metabolite amphotericin B. Fungal Biol Biotechnol 2:1. doi:10.1186/s40694-014-0011-x

    Article  Google Scholar 

  • Taton A, Grubisic S, Ertz D, Hodgson DA, Piccardi R, Biondi N, Tredici MR, Mainini M, Losi D, Marinelli F, Wilmotte A (2006) Polyphasic study of antarctic cyanobacterial strains. J Phycol 42:1257–1270

    Article  CAS  Google Scholar 

  • Vester JK, Glaring MA, Stougaard P (2015) Improved cultivation and metagenomics as new tools for bioprospecting in cold environments. Extremophiles 19:17–29

    Article  CAS  PubMed  Google Scholar 

  • Wietz M, Månsson M, Bowman JS, Blom N, Ng Y, Gram L (2012) Wide distribution of closely related, antibiotic-producing Arthrobacter strains throughout the Arctic Ocean. Appl Environ Microbiol 78:2039–2042

    Google Scholar 

  • Wong CMV, Tam HK, Alias SA, González M, González–Rocha G, Domínguez–Yévenes M (2011) Pseudomonas and Pedobacter isolates from King George Island inhibited the growth of foodborne pathogens. Pol Polar Res 32:3–14

    Google Scholar 

  • Yuan M, Yu Y, Li H-R, Dong N, Zhang X-H (2014) Phylogenetic diversity and biological activity of Actinobacteria isolated from the Chukchi Shelf marine sediments in the Arctic Ocean. Mar Drugs 12:1281–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelina Lo Giudice .

Editor information

Editors and Affiliations

Ethics declarations

Angelina Lo Giudice and Renato Fani declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lo Giudice, A., Fani, R. (2016). Antimicrobial Potential of Cold-Adapted Bacteria and Fungi from Polar Regions. In: Rampelotto, P. (eds) Biotechnology of Extremophiles:. Grand Challenges in Biology and Biotechnology, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-13521-2_3

Download citation

Publish with us

Policies and ethics