Skip to main content

Estimation of Equivalent Model for Cluster of Induction Generator Based on PMU Measurements

  • Chapter
  • First Online:

Part of the book series: Power Systems ((POWSYS))

Abstract

The induction generator (IG) is widely used in many applications due to its simplicity and ease of operation. Typical applications involve the following: split-shaft micro-turbines (SSMT), mini-hydro (MH), and fixed-speed wind turbines (FSWT). The accurate knowledge of the machine parameters is especially important in order to establish the performance of the IG as well as to directly affect its operational and control characteristics. The problem of IG parameter estimation results specially complicated to solve when a cluster of IG is interconnected to create of virtual power plant (VPP). Then, it is desirable to have an effective method to estimate the parameters of an equivalent model for a cluster of IG (which does not require detailed definition of the power plant structure and parameters) by using novel digital measurement equipment such as phasor measurement units (PMU) in transmission and distribution networks. This chapter presents a method for the estimation of an equivalent model (named as EqMCIG App) for a cluster of IG, based on the response to a system frequency disturbance. The performance and robustness of the method are evaluated using two different test systems where the EqMCIG is identified using the variable metric method (VMM). Numerical results demonstrate the viewpoint and effectiveness of the proposed methodology. This chapter have three main contributions: (i) Performing “parameter estimation” using ComIdent command (ii) The use of DSL model on model parameter identification (composite Frame, block definition—BlkDef) (iii) Use of a “Measurement File” object (ElmFile) as inputs variables.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gonzalez-Longatt F (2014) Frequency control and inertial response schemes for the future power networks. In: Hossain J, Mahmud A (eds) Large scale renewable power generation. Springer, Singapore, pp 193–231

    Chapter  Google Scholar 

  2. Chauhan RK, Rajpurohit BS, Singh SN, Gonzalez-Longatt FM (2014) DC grid interconnection for conversion losses and cost optimization. In: Hossain J, Mahmud A (eds) Renewable energy integration. Springer, Singapore, pp 327–345

    Chapter  Google Scholar 

  3. Gonzalez-Longatt F, Regulski P, Wall P, Terzija V (2011) Induction generator model parameter estimation using improved particle swarm optimization and on-line response to a change in frequency. Presented at the IEEE on the power and energy society general meeting, Detroit, 2011

    Google Scholar 

  4. de Mello FP, Feltes JW, Hannett LN, White JC (1982) Application of induction generators in power systems. IEEE Trans Power Apparatus Syst PAS-101:3385–3393

    Article  Google Scholar 

  5. Simões MG, Farret FA (2006) Renewable energy systems: design and analysis with induction generators. CRC Press, Boca Raton

    Google Scholar 

  6. Simões MG, Farret FA (2007) Alternative energy systems: design and analysis with induction generators (Power electronics and applications series). CRC Press, Boca Raton

    Google Scholar 

  7. Lai LL, Chan TF (2007) Distributed generation—induction and permanent magnet generators. Wiley, New Jersey

    Google Scholar 

  8. Al-Hinai A, Schoder K, Feliachi A (2003) Control of grid-connected split-shaft microturbine distributed generator. In: Proceedings of the 35th southeastern symposium on system theory, pp 84–88

    Google Scholar 

  9. Murthy SS, Jha CS, Ghorashi AH, Nagendra Rao PS (1989) Performance analysis of grid connected induction generators driven by hydro/wind turbines including grid abnormalities. In: Proceedings of the 24th intersociety conference energy conversion engineering (IECEC-89), vol 4. pp 2045–2050

    Google Scholar 

  10. Abdin ES, Xu W (1998) Control design and dynamic performance analysis of a wind turbine-induction generator unit. In: Proceedings of international conference on power system technology (POWERCON ‘98), vol 2. pp 1198–1202

    Google Scholar 

  11. Ansuj S, Shokooh F, Schinzinger R (1988) Parameter estimation for induction machines based on sensitivity analysis. In: Industrial applications society 35th annual petroleum and chemical industry conference, 1988, record of conference papers, pp 35–40

    Google Scholar 

  12. Velez-Reyes M, Minami K, Verghese GC (1989) Recursive speed and parameter estimation for induction machines. In: Conference record of the 1989 IEEE industry applications society annual meeting, 1989, vol 1. pp 607–611

    Google Scholar 

  13. Bishop RR, Richards GG (1990) Identifying induction machine parameters using a genetic optimization algorithm. In: Proceedings of Southeastcon ‘90, IEEE, 1990, vol 2. pp. 476–479

    Google Scholar 

  14. Huang KS, Wu QH, Turner DR (2002) Effective identification of induction motor parameters based on fewer measurements. IEEE Trans Energy Convers 17:55–60

    Article  Google Scholar 

  15. Sag T Cunkas M (2007) Multiobjective genetic estimation to induction motor parameters. In: International aegean conference on electrical machines and power electronics (ACEMP ‘07), pp 628–631

    Google Scholar 

  16. Huynh DC, Dunnigan MW (2010) Parameter estimation of an induction machine using advanced particle swarm optimisation algorithms. Electr Power Appl IET 4:748–760

    Article  Google Scholar 

  17. Huynh DC, Dunnigan MW (2010) Parameter estimation of an induction machine using a dynamic particle swarm optimization algorithm. In: IEEE international symposium on industrial electronics (ISIE), 2010, pp 1414–1419

    Google Scholar 

  18. Marino P, Mungiguerra V, Russo F, Vasca F, (1996) Parameter and state estimation for induction motors via interlaced least squares algorithm and Kalman filter. In: IEEE 27th annual conference on power electronics specialists, PESC ‘96, 1996, vol 2. pp 1235–1241

    Google Scholar 

  19. Ursem RK, Vadstrup P (2003) Parameter identification of induction motors using differential evolution. In: The 2003 Congress on Evolutionary Computation, CEC ‘03, 2003, vol 2. pp 790–796

    Google Scholar 

  20. Karimi A, Choudhry MA, Feliachi A (2007) PSO-based evolutionary optimization for parameter identification of an induction motor. In: Proceedings of 39th North American power symposium, 2007, NAPS ‘07, pp 659–664

    Google Scholar 

  21. Chen G, Guo W, Huang K (2007) On line parameter identification of an induction motor using improved particle swarm optimization. In: Chinese control conference, 2007, CCC 2007, pp 745–749

    Google Scholar 

  22. Bakari KE, Kling WL (2010) Virtual power plants: an answer to increasing distributed generation. In: Conference on innovative smart grid technologies (ISGT Europe), 2010 IEEE PES, pp 1–6

    Google Scholar 

  23. González-Longatt F, Regulski P, Wall P, Terzija V (2011) Fixed speed wind generator model parameter estimation using improved particle swarm optimization and system frequency disturbances. In: The 1st IET conference on renewable power generation, RPG 2011, Edinburgh, pp 1–5

    Google Scholar 

  24. Terzija V (2007) Wide area monitoring protection and control—WAMPAC. In: International conference on information and communication technology in electrical sciences (ICTES 2007), pp I-1

    Google Scholar 

  25. Terzija V, Valverde G, Deyu C, Regulski P, Madani V, Fitch J et al (2011) Wide-area monitoring, protection, and control of future electric power networks. In: Proceedings of the IEEE, vol 99. pp 80–93

    Google Scholar 

  26. Kampisios K, Zanchetta P, Gerada C, Trentin A (2008) Identification of induction machine electrical parameters using genetic algorithms optimization. In: Industry applications society annual meeting, IAS ‘08, IEEE, 2008, pp 1–7

    Google Scholar 

  27. Filho EBS, Lima AMN, Jacobina CB (1991) Parameter estimation for induction machines via non-linear least squares method. In: Proceedings of international conference on industrial electronics, control and instrumentation, IECON ’91, 1991, vol 1. pp 639–643

    Google Scholar 

  28. de Oliveira PJR, Seixas PF, Aguirre LA, Peixoto ZMA (1998) Parameter estimation of a induction machine using a continuous time model. In: Proceedings of the 24th annual conference of the IEEE on industrial electronics society, IECON ‘98, 1998, vol 1. pp 292–296

    Google Scholar 

  29. Fletcher R (1970) A new approach to variable metric algorithms. Comput J 13:317–322

    Article  MATH  Google Scholar 

  30. Fletcher R, Powell MJD (1963) A rapidly convergent descent method for minimization. Comput J 6:163–168

    Article  MATH  MathSciNet  Google Scholar 

  31. Fletcher R, Powell MJD (1987) Practical methods of optimization, 2nd edn. Wiley, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco M. Gonzalez-Longatt .

Editor information

Editors and Affiliations

20.1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (ZIP 294 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gonzalez-Longatt, F.M., Rueda, J.L., Charalambous, C.A., De Oliveira, P. (2014). Estimation of Equivalent Model for Cluster of Induction Generator Based on PMU Measurements. In: Gonzalez-Longatt, F., Luis Rueda, J. (eds) PowerFactory Applications for Power System Analysis. Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-12958-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12958-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12957-0

  • Online ISBN: 978-3-319-12958-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics