Skip to main content

System Identification Technique and Neural Networks for Material Lifetime Assessment Application

  • Chapter
  • First Online:
Complex System Modelling and Control Through Intelligent Soft Computations

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 319))

Abstract

Modeling of a material lifetime to assess the material useful lifetime during its service in design has been always challenging task. In the present study, a framework of system identification technique based upon nonlinear autoregressive exogenous inputs (NARX) was introduced and presented for material lifetime assessment using neural networks (NN). Using the framework, the task of material lifetime assessment was accomplished in a fashion of one-step ahead prediction with respect to stress level. In addition, by sliding over one-step to one-step of the stress level, the task of prediction dynamically covered all loading spectrum. As a result, material lifetime assessment can be fashioned for a wide spectrum of loading in an efficient manner based upon limited material lifetime data as the basis of the NARX regressor. The multilayer perceptron (MLP)-NARX and radial basis functions NN (RBFNN)-NARX models were developed to predict fatigue lives of composite materials under multiaxial and multivariable loadings. Several multidirectional laminates of polymeric based composites were examined in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Assaf, Y., & El-Kadi, H. (2001). Fatigue life prediction of unidirectional glass fiber/epoxy composite laminae using neural networks. Composites Structures, 53(6), 65–71.

    Article  Google Scholar 

  • Aymerich, F., & Serra, M. (1998). Prediction of fatigue strength of composite laminates by means of neural networks. In The third seminar on experimental techniques and design in composite materials (pp. 231–240), October 30–31, 1996, Cagliari, Italy. doi:10.4028/www.scientific.net/KEM.144.231.

    Google Scholar 

  • Azar, A. T. (2013). Fast neural network learning algorithms for medical applications. Neural Computing and Applications, 23(3–4), 1019–1034.

    Article  Google Scholar 

  • Basso, M., Giarre, L., Groppi, S., & Zappa, G. (2005). NARX models of an industrial power plant gas turbine. IEEE Transactions on Control System Technology, 13(4), 599–604.

    Article  Google Scholar 

  • Bezazi, A., Pierce, S. G., Worden, K., & Harkati, E. H. (2007). Fatigue life prediction of sandwich composite materials under flexural tests using a Bayesian trained artificial neural network. International Journal of Fatigue, 29(4), 738–747.

    Article  Google Scholar 

  • Bucar, T., Nagode, M., & Fajdiga, M. (2007). An improved neural computing method for describing the scatter of S-N curves. International Journal of Fatigue, 29(12), 2125–2137.

    Article  MATH  Google Scholar 

  • Bukkapatnam, S. T. S., & Sadananda, K. (2005). A genetic algorithm for unified approach-based predictive modeling of fatigue crack growth. International Journal of Fatigue, 27(10–12), 1354–1359.

    Article  Google Scholar 

  • Catelani, M., & Fort, A. (2000). Fault diagnosis of electronic analog circuits using a radial basis function network classifier. Measurement, 28(3), 147–158.

    Article  Google Scholar 

  • Chen, S., Billings, S. A., & Grant, P. M. (1990). Non-linear system identification using neural networks. International Journal of Control, 51(6), 1191–1214.

    Article  MATH  MathSciNet  Google Scholar 

  • El-Kadi, H., & Al-Assaf, Y. (2002). Prediction of the fatigue life of unidirectional glass fiber/epoxy composite laminae using different neural network paradigms. Composites Structures, 55(1), 239–246.

    Article  Google Scholar 

  • Fathi, A., & Aghakouchak, A. A. (2007). Prediction of fatigue crack growth rate in welded tubular joints using neural network. International Journal of Fatigue, 29(2), 261–275.

    Article  Google Scholar 

  • Foresee, F. D., & Hagan, M. T. (1997). Gauss-Newton approximation to Bayesian learning. In The 1997 IEEE international conference on neural networks (ICNN) (pp. 1930–1935), June 9–12, 1997, Houston, TX, USA. doi:10.1109/ICNN.1997.614194.

  • Freire Junior, R. C. S., Neto, A. D. D., & de Aquino, E. M. F. (2005). Building of constant life diagrams of fatigue using artificial neural networks. International Journal of Fatigue, 27(7), 746–751.

    Article  Google Scholar 

  • Freire Junior, R. C. S., Neto, A. D. D., & de Aquino, E. M. F. (2007). Use of modular networks in the building of constant life diagrams. International Journal of Fatigue, 29(3), 389–396.

    Article  Google Scholar 

  • Freire Junior, R. C. S., Neto, A. D. D., & de Aquino, E. M. F. (2009). Comparative study between ANN models and conventional equations in the analysis of fatigue failure of GFRP. International Journal of Fatigue, 31(5), 831–839.

    Article  Google Scholar 

  • Haque, M. E., & Sudhakar, K. V. (2002). ANN back-propagation prediction model for fracture toughness in microalloy steel. International Journal of Fatigue, 24(9), 1003–1010.

    Article  Google Scholar 

  • Harris, B. (Ed.). (2003). Fatigue in composites. Cambridge: Woodhead Publishing Ltd.

    Google Scholar 

  • Haykin, S. (2009). Neural networks and learning machines (3rd ed.). USA: Pearson Prentice Hall.

    Google Scholar 

  • Hidayat, M. I. P., & Melor, P. S. (2009). Optimizing neural network prediction of composite fatigue life under variable amplitude loading using Bayesian regularization chap. 9. In S. M. Sapuan & I. M. Mujtaba (Eds.), Composite materials technology: Neural network applications. USA: CRC Press, Taylor and Francis LLC.

    Google Scholar 

  • Hidayat, M. I. P., Yusoff, P. S. M. M., & Berata, W. (2011). Neural networks with NARX structure for material lifetime assessment application. In The 2011 IEEE symposium on computers and informatics (ISCI) (pp. 273–278), March 20–23, 2011, Kuala Lumpur, Malaysia. doi:10.1109/ISCI.2011.5958926.

  • Hidayat, M. I. P., & Berata, W. (2011). Neural networks with radial basis function and NARX structure for material lifetime assessment application. In The 12th international conference on quality in research (QiR 12) (pp. 143–150), July 4–7, 2011, Bali, Indonesia. doi:10.4028/www.scientific.net/AMR.277.143.

    Google Scholar 

  • Hung, S. L., & Kao, C. Y. (2002). Structural damage detection using the optimal weights of the approximating artificial neural networks. Earthquake Engineering and Structural Dynamics, 31(2), 217–234.

    Article  Google Scholar 

  • Klemenc, J., & Fajdiga, M. (2012). Estimating S-N curves and their scatter using a differential ant-stigmergy algorithm. International Journal of Fatigue, 43(1), 90–97.

    Article  Google Scholar 

  • Klemenc, J., & Fajdiga, M. (2013). Joint estimation of E-N curves and their scatter using evolutionary algorithms. International Journal of Fatigue, 56(1), 42–53.

    Article  Google Scholar 

  • Lee, J. A., & Almond, D. P. (2003). A neural-network approach to fatigue life prediction chap. 21. In B. Harris (Ed.), Fatigue in composites. Cambridge: Woodhead Publishing Ltd.

    Google Scholar 

  • MacKay, D. J. C. (2004). Information theory, inference and learning algorithms. England: Cambridge University Press.

    Google Scholar 

  • Majidian, A., & Saidi, M. H. (2007). Comparison of fuzzy logic and neural network in life prediction of boiler tubes. International Journal of Fatigue, 29(3), 489–498.

    Article  Google Scholar 

  • Mandell, J. F., & Samborsky, D. D. (2010). DOE/MSU composite material fatigue database: Test, methods, material and analysis. SAND97-3002. Albuquerque, NM: Sandia National Laboratories.

    Google Scholar 

  • Mollah, A. A., & Pratihar, D. K. (2008). Modeling of TIG welding and abrasive flow machining processes using radial basis function networks. International Journal of Advanced Manufacturing Technology, 37(9–10), 937–952.

    Article  Google Scholar 

  • Nabney, I. T. (2002). NETLAB algorithms for pattern recognition. London: Springer.

    MATH  Google Scholar 

  • Narendra, K., & Parthasarathy, K. (1990). Identification and control of dynamic systems using neural networks. IEEE Transactions on Neural Networks, 1(1), 4–27.

    Article  Google Scholar 

  • Neural Network Toolboxâ„¢ User’s Guide © COPYRIGHT 1992–2010. USA: The MathWorks, Inc.

    Google Scholar 

  • Nocedal, J., & Wright, S. J. (2006). Numerical optimization (2nd ed.). New York: Springer.

    MATH  Google Scholar 

  • Philippidis, T. P., & Passipoularidis, V. A. (2007). Residual strength after fatigue in composites: Theory vs. experiment. International Journal of Fatigue, 29(12), 2104–2116.

    Article  Google Scholar 

  • Passipoularidis, V. A., & Philippidis, T. P. (2009). A study of factors affecting life prediction of composites under spectrum loading. International Journal of Fatigue, 31(3), 408–417.

    Article  Google Scholar 

  • Passipoularidis, V. A., Philippidis, T. P., & Brondsted, P. (2011). Fatigue life prediction in composites using progressive damage modelling under block and spectrum loading. International Journal of Fatigue, 33(2), 132–144.

    Article  Google Scholar 

  • Post, N. L., Case, S. W., & Lesko, J. J. (2008). Modeling the variable amplitude fatigue of composite materials: A review and evaluation of the state of the art for spectrum loading. International Journal of Fatigue, 30(12), 2064–2086.

    Article  MATH  Google Scholar 

  • Pujol, J. C. F., & Pinto, J. M. A. (2011). A neural network approach to fatigue life prediction. International Journal of Fatigue, 33(3), 313–322.

    Article  Google Scholar 

  • Reifsnider, K. L. (Ed.). (1991). Fatigue of composite materials. Amsterdam: Elsevier.

    Google Scholar 

  • Schijve, J. (Ed.). (2009). Fatigue of structures and materials (pp. 373–394). Netherlands: Springer.

    Google Scholar 

  • Sendeckyj, G. P. (2001). Constant life diagrams—A historical review. International Journal of Fatigue, 23(4), 347–353.

    Article  Google Scholar 

  • Vassilopoulos, A. P., & Philippidis, T. P. (2002). Complex stress state effect on fatigue life of GRP laminates. Part I, experimental. International Journal of Fatigue, 24(8), 813–823.

    Article  Google Scholar 

  • Vassilopoulos, A. P., Georgopoulos, E. F., & Dionysopoulos, V. (2007). Artificial neural networks in spectrum fatigue life prediction of composite materials. International Journal of Fatigue, 29(3), 20–29.

    Article  Google Scholar 

  • Vassilopoulos, A. P., Georgopoulos, E. F., & Keller, T. (2008). Comparison of genetic programming with conventional methods for fatigue life modeling of FRP composite materials. International Journal of Fatigue, 30(9), 1634–1645.

    Article  Google Scholar 

  • Vassilopoulos, A. P., Manshadi, B. D., & Keller, T. (2010). Influence of the constant life diagram formulation on the fatigue life prediction of composite materials. International Journal of Fatigue, 32(4), 659–669.

    Article  Google Scholar 

  • Venkatesh, V., & Rack, H. J. (1999). A neural network approach to elevated temperature creep–fatigue life prediction. International Journal of Fatigue, 21(3), 225–234.

    Article  Google Scholar 

  • Zhang, Z., & Friedrich, K. (2003). Artificial neural networks applied to polymer composites: A review. Composites Science and Technology, 63(14), 2029–2044.

    Article  Google Scholar 

Download references

Acknowledgment

The present author would like to thank the Montana State University and A.P. Vassilopoulos and T.P. Philippidis (doi:10.1016/S0142-1123(02)00003-8) for the fatigue database published through the internet. The author also would like to thank to editors and reviewers for their useful suggestions and comments that further improve the presentation of this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mas Irfan P. Hidayat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hidayat, M.I.P. (2015). System Identification Technique and Neural Networks for Material Lifetime Assessment Application. In: Zhu, Q., Azar, A. (eds) Complex System Modelling and Control Through Intelligent Soft Computations. Studies in Fuzziness and Soft Computing, vol 319. Springer, Cham. https://doi.org/10.1007/978-3-319-12883-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12883-2_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12882-5

  • Online ISBN: 978-3-319-12883-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics